# -*- coding: utf-8 -*- """ @author: Laura C. Kühle """ import numpy as np from sympy import Symbol, integrate x = Symbol('x') z = Symbol('z') class Vector(object): def __init__(self, polynomial_degree): self._polynomial_degree = polynomial_degree self._basis = self._build_basis_vector(x) self._wavelet = self._build_wavelet_vector(z) def get_basis_vector(self): return self._basis def _build_basis_vector(self, eval_point): return [] def get_wavelet_vector(self): return self._wavelet def _build_wavelet_vector(self, eval_point): return [] def get_basis_projections(self): pass def get_multiwavelet_projections(self): pass class Legendre(Vector): def _build_basis_vector(self, eval_point): return self._calculate_legendre_vector(eval_point) def _calculate_legendre_vector(self, eval_point): vector = [] for degree in range(self._polynomial_degree+1): if degree == 0: vector.append(1.0 + 0*eval_point) else: if degree == 1: vector.append(eval_point) else: poly = (2.0*degree - 1)/degree * eval_point * vector[-1] - (degree-1)/degree * vector[-2] vector.append(poly) return vector class OrthonormalLegendre(Legendre): def _build_basis_vector(self, eval_point): leg_vector = self._calculate_legendre_vector(eval_point) return [leg_vector[degree] * np.sqrt(degree+0.5) for degree in range(self._polynomial_degree+1)] def _build_wavelet_vector(self, eval_point): degree = self._polynomial_degree if degree == 0: return [np.sqrt(0.5) + eval_point*0] if degree == 1: return [np.sqrt(1.5) * (-1 + 2*eval_point), np.sqrt(0.5) * (-2 + 3*eval_point)] if degree == 2: return [1/3 * np.sqrt(0.5) * (1 - 24*eval_point + 30*(eval_point**2)), 1/2 * np.sqrt(1.5) * (3 - 16*eval_point + 15*(eval_point**2)), 1/3 * np.sqrt(2.5) * (4 - 15*eval_point + 12*(eval_point**2))] if degree == 3: return [np.sqrt(15/34) * (1 + 4*eval_point - 30*(eval_point**2) + 28*(eval_point**3)), np.sqrt(1/42) * (-4 + 105*eval_point - 300*(eval_point**2) + 210*(eval_point**3)), 1/2 * np.sqrt(35/34) * (-5 + 48*eval_point - 105*(eval_point**2) + 64*(eval_point**3)), 1/2 * np.sqrt(5/34) * (-16 + 105*eval_point - 192*(eval_point**2) + 105*(eval_point**3))] if degree == 4: return [np.sqrt(1/186) * (1 + 30*eval_point + 210*(eval_point**2) - 840*(eval_point**3) + 630*(eval_point**4)), 0.5 * np.sqrt(1/38) * (-5 - 144*eval_point + 1155*(eval_point**2) - 2240*(eval_point**3) + 1260*(eval_point**4)), np.sqrt(35/14694) * (22 - 735*eval_point + 3504*(eval_point**2) - 5460*(eval_point**3) + 2700*(eval_point**4)), 1/8 * np.sqrt(21/38) * (35 - 512*eval_point + 1890*(eval_point**2) - 2560*(eval_point**3) + 1155*(eval_point**4)), 0.5 * np.sqrt(7/158) * (32 - 315*eval_point + 960*(eval_point**2) - 1155*(eval_point**3) + 480*(eval_point**4))] raise ValueError('Invalid value: Alpert\'s wavelet is only available \ up to degree 4 for this application') def get_basis_projections(self): basis_projection_left = self._build_basis_matrix(z, 0.5 * (z - 1)) basis_projection_right = self._build_basis_matrix(z, 0.5 * (z + 1)) return basis_projection_left, basis_projection_right def _build_basis_matrix(self, first_param, second_param): matrix = [] for i in range(self._polynomial_degree + 1): row = [] for j in range(self._polynomial_degree + 1): entry = integrate(self._basis[i].subs(x, first_param) * self._basis[j].subs(x, second_param), (z, -1, 1)) row.append(np.float64(entry)) matrix.append(row) return matrix def get_multiwavelet_projections(self): wavelet_projection_left = self._build_multiwavelet_matrix(z, -0.5*(z-1), True) wavelet_projection_right = self._build_multiwavelet_matrix(z, 0.5*(z+1), False) return wavelet_projection_left, wavelet_projection_right def _build_multiwavelet_matrix(self, first_param, second_param, is_left_matrix): matrix = [] for i in range(self._polynomial_degree+1): row = [] for j in range(self._polynomial_degree+1): entry = integrate(self._basis[i].subs(x, first_param) * self._wavelet[j].subs(z, second_param), (z, -1, 1)) if is_left_matrix: entry = entry * (-1)**(j + self._polynomial_degree + 1) row.append(np.float64(entry)) matrix.append(row) return matrix