# -*- coding: utf-8 -*-
"""
@author: Laura C. Kühle

TODO: Discuss descriptions (matrices, cfl number, right-hand side,
    limiting slope, basis, wavelet, etc.)
TODO: Discuss referencing info on SSPRK3

"""
from abc import ABC, abstractmethod
import numpy as np
import time


class UpdateScheme(ABC):
    """Abstract class for updating projections at a time step.

    Attributes
    ----------
    stiffness_matrix : ndarray
        Matrix
    boundary_matrix : ndarray
        Matrix

    Methods
    -------
    get_name()
        Returns string of class name.
    step(projection, cfl_number)
        Performs time step.

    """
    def __init__(self, polynomial_degree, num_grid_cells, detector, limiter):
        """Initializes UpdateScheme.

        Parameters
        ----------
        polynomial_degree : int
            Polynomial degree.
        num_grid_cells : int
            Number of cells in the mesh. Usually exponential of 2.
        detector : TroubledCellDetector object
            Troubled cell detector for evaluation.
        limiter : Limiter object
            Limiter for evaluation.

        """
        # Unpack positional arguments
        self._polynomial_degree = polynomial_degree
        self._num_grid_cells = num_grid_cells
        self._detector = detector
        self._limiter = limiter

        self._reset()

    def _reset(self):
        """Resets instance variables."""
        # Set stiffness matrix
        matrix = []
        for i in range(self._polynomial_degree+1):
            new_row = []
            for j in range(self._polynomial_degree+1):
                new_entry = -1.0
                if (j < i) & ((i+j) % 2 == 1):
                    new_entry = 1.0
                new_row.append(new_entry*np.sqrt((i+0.5) * (j+0.5)))
            matrix.append(new_row)
        self._stiffness_matrix = np.array(matrix)
        # former: inv_mass @ np.array(matrix)

        # Set boundary matrix
        matrix = []
        for i in range(self._polynomial_degree+1):
            new_row = []
            for j in range(self._polynomial_degree+1):
                new_entry = np.sqrt((i+0.5) * (j+0.5)) * (-1.0)**i
                new_row.append(new_entry)
            matrix.append(new_row)
        self._boundary_matrix = np.array(matrix)
        # former: inv_mass @ np.array(matrix)

    def get_name(self):
        """Returns string of class name."""
        return self.__class__.__name__

    def step(self, projection, cfl_number):
        """Performs time step.

        Parameters
        ----------
        projection : ndarray
            Matrix of projection for each polynomial degree.
        cfl_number : float
            CFL number to ensure stability.

        Returns
        -------
        current_projection : ndarray
            Matrix of projection of current update step for each polynomial
            degree.
        troubled_cells : list
            List of indices for all detected troubled cells.

        """
        current_projection, troubled_cells = self._apply_stability_method(
            projection, cfl_number)

        return current_projection, troubled_cells

    @abstractmethod
    def _apply_stability_method(self, projection, cfl_number):
        """Applies stability method.

        Parameters
        ----------
        projection : ndarray
            Matrix of projection for each polynomial degree.
        cfl_number : float
            CFL number to ensure stability.

        Returns
        -------
        current_projection : ndarray
            Matrix of projection of current update step for each polynomial
            degree.
        troubled_cells : list
            List of indices for all detected troubled cells.

        """
        pass

    def _apply_limiter(self, current_projection):
        """Applies limiter on troubled cells.

        Parameters
        ----------
        current_projection : ndarray
            Matrix of projection of current update step for each polynomial
            degree.

        Returns
        -------
        new_projection : ndarray
            Matrix of updated projection for each polynomial degree.
        troubled_cells : list
            List of indices for all detected troubled cells.

        """
        troubled_cells = self._detector.get_cells(current_projection)

        new_projection = current_projection.copy()
        for cell in troubled_cells:
            new_projection[:,  cell] = self._limiter.apply(current_projection,
                                                           cell)

        return new_projection, troubled_cells

    def _enforce_boundary_condition(self, current_projection):
        """Enforces boundary condition.

        Adjusts ghost cells to ensure periodic boundary condition.

        Parameters
        ----------
        current_projection : ndarray
            Matrix of projection of current update step for each polynomial
            degree.

        Returns
        -------
        current_projection : ndarray
            Matrix of projection of current update step for each polynomial
            degree.

        """
        current_projection[:, 0] = current_projection[:, self._num_grid_cells]
        current_projection[:, self._num_grid_cells+1] \
            = current_projection[:, 1]
        return current_projection


class SSPRK3(UpdateScheme):
    """Class for strong stability-preserving Runge Kutta of order 3.

    Notes
    -----
    Reference (?)

    """
    # Override method of superclass
    def _apply_stability_method(self, projection, cfl_number):
        """Applies stability method.

        Parameters
        ----------
        projection : ndarray
            Matrix of projection for each polynomial degree.
        cfl_number : float
            CFL number to ensure stability.

        Returns
        -------
        current_projection : ndarray
            Matrix of projection of current update step for each polynomial
            degree.
        troubled_cells : list
            List of indices for all detected troubled cells.

        """
        original_projection = projection

        current_projection = self._apply_first_step(original_projection,
                                                    cfl_number)
        current_projection, __ = self._apply_limiter(current_projection)
        current_projection = self._enforce_boundary_condition(
            current_projection)

        current_projection = self._apply_second_step(original_projection,
                                                     current_projection,
                                                     cfl_number)
        current_projection, __ = self._apply_limiter(current_projection)
        current_projection = self._enforce_boundary_condition(
            current_projection)

        current_projection = self._apply_third_step(original_projection,
                                                    current_projection,
                                                    cfl_number)
        current_projection, troubled_cells = self._apply_limiter(
            current_projection)
        current_projection = self._enforce_boundary_condition(
            current_projection)

        return current_projection, troubled_cells

    def _apply_first_step(self, original_projection, cfl_number):
        """Applies first step of SSPRK3.

        Parameters
        ----------
        original_projection : ndarray
            Matrix of original projection for each polynomial degree.
        cfl_number : float
            CFL number to ensure stability.

        Returns
        -------
        ndarray
            Matrix of updated projection for each polynomial degree.

        """
        right_hand_side = self._update_right_hand_side(original_projection)
        return original_projection + (cfl_number*right_hand_side)

    def _apply_second_step(self, original_projection, current_projection,
                           cfl_number):
        """Applies second step of SSPRK3.

        Parameters
        ----------
        original_projection : ndarray
            Matrix of original projection for each polynomial degree.
        current_projection : ndarray
            Matrix of projection of current update step for each polynomial
            degree.
        cfl_number : float
            CFL number to ensure stability.

        Returns
        -------
        ndarray
            Matrix of updated projection for each polynomial degree.

        """
        right_hand_side = self._update_right_hand_side(current_projection)
        return 1/4 * (3*original_projection
                      + (current_projection + cfl_number*right_hand_side))

    def _apply_third_step(self, original_projection, current_projection,
                          cfl_number):
        """Applies third step of SSPRK3.

        Parameter
        ---------
        original_projection : ndarray
            Matrix of original projection for each polynomial degree.
        current_projection : ndarray
            Matrix of projection of current update step for each polynomial
            degree.
        cfl_number : float
            CFL number to ensure stability.

        Returns
        -------
        ndarray
            Matrix of updated projection for each polynomial degree.

        """
        right_hand_side = self._update_right_hand_side(current_projection)
        return 1/3 * (original_projection
                      + 2*(current_projection + cfl_number*right_hand_side))

    def _update_right_hand_side(self, current_projection):
        """Updates right-hand side.

        Parameter
        ---------
        current_projection : ndarray
            Matrix of projection of current update step for each polynomial
            degree.

        Returns
        -------
        ndarray
            Matrix of right-hand side.

        """
        # Initialize vector and set first entry to accommodate for ghost cell
        right_hand_side = [0]

        for j in range(self._num_grid_cells):
            right_hand_side.append(2*(self._stiffness_matrix
                                      @ current_projection[:, j+1]
                                      + self._boundary_matrix
                                      @ current_projection[:, j]))

        # Set ghost cells to respective value
        right_hand_side[0] = right_hand_side[self._num_grid_cells]
        right_hand_side.append(right_hand_side[1])

        return np.transpose(right_hand_side)