# -*- coding: utf-8 -*- """ @author: Laura C. Kühle TODO: Give option to select plotting color """ import os import time import json import numpy as np import matplotlib from matplotlib import pyplot as plt import seaborn as sns from numpy import ndarray from sympy import Symbol from Quadrature import Quadrature from Initial_Condition import InitialCondition from Basis_Function import Basis, OrthonormalLegendre from projection_utils import calculate_exact_solution,\ calculate_approximate_solution, Mesh from encoding_utils import decode_ndarray matplotlib.use('Agg') x = Symbol('x') z = Symbol('z') sns.set() def plot_solution_and_approx(grid: ndarray, exact: ndarray, approx: ndarray, color_exact: str, color_approx: str) -> None: """Plots approximate and exact solution against each other. Parameters ---------- grid : ndarray List of mesh evaluation points. exact : ndarray Array containing exact evaluation of a function. approx : ndarray Array containing approximate evaluation of a function. color_exact : str String describing color to plot exact solution. color_approx : str String describing color to plot approximate solution. """ print(color_exact, color_approx) plt.figure('exact_and_approx') plt.plot(grid[0], exact[0], color_exact) plt.plot(grid[0], approx[0], color_approx) plt.xlabel('x') plt.ylabel('u(x,t)') plt.title('Solution and Approximation') def plot_semilog_error(grid: ndarray, pointwise_error: ndarray) -> None: """Plots semi-logarithmic error between approximate and exact solution. Parameters ---------- grid : ndarray List of mesh evaluation points. pointwise_error : ndarray Array containing pointwise difference between exact and approximate solution. """ plt.figure('semilog_error') plt.semilogy(grid[0], pointwise_error[0]) plt.xlabel('x') plt.ylabel('|u(x,t)-uh(x,t)|') plt.title('Semilog Error plotted at Evaluation points') def plot_error(grid: ndarray, exact: ndarray, approx: ndarray) -> None: """Plots error between approximate and exact solution. Parameters ---------- grid : ndarray List of mesh evaluation points. exact : ndarray Array containing exact evaluation of a function. approx : ndarray Array containing approximate evaluation of a function. """ plt.figure('error') plt.plot(grid[0], exact[0]-approx[0]) plt.xlabel('X') plt.ylabel('u(x,t)-uh(x,t)') plt.title('Errors') def plot_shock_tube(num_grid_cells: int, troubled_cell_history: list, time_history: list) -> None: """Plots shock tube. Plots detected troubled cells over time to depict the evolution of shocks as shock tubes. Parameters ---------- num_grid_cells : int Number of cells in the mesh. Usually exponential of 2. troubled_cell_history : list List of detected troubled cells for each time step. time_history : list List of value of each time step. """ plt.figure('shock_tube') for pos in range(len(time_history)): current_cells = troubled_cell_history[pos] for cell in current_cells: plt.plot(cell, time_history[pos], 'k.') plt.xlim((0, num_grid_cells)) plt.xlabel('Cell') plt.ylabel('Time') plt.title('Shock Tubes') def plot_details(fine_projection: ndarray, fine_mesh: Mesh, basis: Basis, coarse_projection: ndarray, multiwavelet_coeffs: ndarray) -> None: """Plots details of projection to coarser mesh. Parameters ---------- fine_projection, coarse_projection : ndarray Matrix of projection for each polynomial degree. fine_mesh : Mesh Fine mesh for evaluation. basis: Basis object Basis used for calculation. multiwavelet_coeffs : ndarray Matrix of multiwavelet coefficients. """ num_coarse_grid_cells = len(coarse_projection[0]) averaged_projection = [[coarse_projection[degree][cell] * basis.basis[degree].subs(x, value) for cell in range(num_coarse_grid_cells) for value in [-0.5, 0.5]] for degree in range(basis.polynomial_degree + 1)] wavelet_projection = [[multiwavelet_coeffs[degree][cell] * basis.wavelet[degree].subs(z, 0.5) * value for cell in range(num_coarse_grid_cells) for value in [(-1) ** (basis.polynomial_degree + degree + 1), 1]] for degree in range(basis.polynomial_degree + 1)] projected_coarse = np.sum(averaged_projection, axis=0) projected_fine = np.sum([fine_projection[degree] * basis.basis[degree].subs(x, 0) for degree in range(basis.polynomial_degree + 1)], axis=0) projected_wavelet_coeffs = np.sum(wavelet_projection, axis=0) plt.figure('coeff_details') plt.plot(fine_mesh.non_ghost_cells, projected_fine-projected_coarse, 'm-.') plt.plot(fine_mesh.non_ghost_cells, projected_wavelet_coeffs, 'y') plt.legend(['Fine-Coarse', 'Wavelet Coeff']) plt.xlabel('X') plt.ylabel('Detail Coefficients') plt.title('Wavelet Coefficients') def plot_classification_barplot(evaluation_dict: dict, colors: dict) -> None: """Plots classification accuracy. Plots given evaluation measures in a bar plot for each model. Parameters ---------- evaluation_dict : dict Dictionary containing classification evaluation data. colors : dict Dictionary containing plotting colors. """ model_names = evaluation_dict[list(colors.keys())[0]].keys() font_size = 16 - (len(max(model_names, key=len))//3) pos = np.arange(len(model_names)) width = 1/(3*len(model_names)) fig = plt.figure('barplot') ax = fig.add_axes([0.15, 0.3, 0.6, 0.6]) step_len = 1 adjustment = -(len(model_names)//2)*step_len for measure in evaluation_dict: model_eval = [evaluation_dict[measure][model] for model in evaluation_dict[measure]] ax.bar(pos + adjustment*width, model_eval, width, label=measure, color=colors[measure]) adjustment += step_len ax.set_xticks(pos) ax.set_xticklabels(model_names, rotation=50, ha='right', fontsize=font_size) ax.set_ylabel('Classification (%)') ax.set_ylim(bottom=-0.02) ax.set_ylim(top=1.02) ax.set_title('Classification Evaluation (Barplot)') ax.legend(loc='center right', bbox_to_anchor=(1.4, 0.75), shadow=True, ncol=1, fancybox=True, fontsize=8) def plot_classification_boxplot(evaluation_dict: dict, colors: dict) -> None: """Plots classification accuracy. Plots given evaluation measures in a boxplot for each model. Parameters ---------- evaluation_dict : dict Dictionary containing classification evaluation data. colors : dict Dictionary containing plotting colors. """ model_names = evaluation_dict[list(colors.keys())[0]].keys() font_size = 16 - (len(max(model_names, key=len))//3) fig = plt.figure('boxplot') ax = fig.add_axes([0.15, 0.3, 0.6, 0.6]) step_len = 1.5 boxplots = [] adjustment = -(len(model_names)//2)*step_len pos = np.arange(len(model_names)) width = 1/(5*len(model_names)) for measure in evaluation_dict: model_eval = [evaluation_dict[measure][model] for model in evaluation_dict[measure]] boxplot = ax.boxplot(model_eval, positions=pos + adjustment*width, widths=width, meanline=True, showmeans=True, patch_artist=True) for patch in boxplot['boxes']: patch.set(facecolor=colors[measure]) boxplots.append(boxplot) adjustment += step_len ax.set_xticks(pos) ax.set_xticklabels(model_names, rotation=50, ha='right', fontsize=font_size) ax.set_ylim(bottom=-0.02) ax.set_ylim(top=1.02) ax.set_ylabel('Classification (%)') ax.set_title('Classification Evaluation (Boxplot)') ax.legend([bp["boxes"][0] for bp in boxplots], evaluation_dict.keys(), loc='center right', bbox_to_anchor=(1.4, 0.75), shadow=True, ncol=1, fancybox=True, fontsize=8) def plot_evaluation_results(evaluation_file: str, directory: str, colors: dict = None) -> None: """Plots given evaluation results of model classifications. Plots evaluation results for all measures for which a color is given. If colors is set to None, all measures are plotted with a default color scheme. Parameters ---------- evaluation_file: str Path to file containing evaluation results. directory : str Path to directory for saving resulting plots. colors : dict, optional Dictionary containing plotting colors. If None, set to default colors. Default: None. """ tic = time.perf_counter() # Set colors if not given if colors is None: colors = {'Accuracy': 'magenta', 'Precision_Smooth': 'red', 'Precision_Troubled': '#8B0000', 'Recall_Smooth': 'blue', 'Recall_Troubled': '#00008B', 'F-Score_Smooth': 'green', 'F-Score_Troubled': '#006400', 'AUROC': 'yellow'} # Read evaluation results print('Reading evaluation results.') with open(evaluation_file) as json_file: classification_stats = json.load(json_file) # Plot data print('\nPlotting evaluation of trained models...') print('Plotting data in boxplot.') models = classification_stats[list(colors.keys())[0]].keys() plot_classification_boxplot(classification_stats, colors) print('Plotting averaged data in barplot.') classification_stats = {measure: {model: np.array( classification_stats[measure][model]).mean() for model in models} for measure in colors} plot_classification_barplot(classification_stats, colors) print('Finished plotting evaluation of trained models!\n') # Set paths for plot files if not existing already plot_dir = directory + '/model evaluation' if not os.path.exists(plot_dir): os.makedirs(plot_dir) # Save plots print('Saving plots.') file_name = evaluation_file.split('/')[-1].rstrip('.json') for identifier in plt.get_figlabels(): plt.figure(identifier) plt.savefig(plot_dir + '/' + file_name + '.' + identifier + '.pdf') toc = time.perf_counter() print(f'Total runtime: {toc - tic:0.4f}s') def plot_approximation_results(data_file: str, directory: str, plot_name: str, quadrature: Quadrature, init_cond: InitialCondition) -> None: """Plots given approximation results. Generates plots based on given data, sets plot directory if not already existing, and saves plots. Parameters ---------- data_file: str Path to data file for plotting. directory: str Path to directory in which plots will be saved. plot_name : str Name of plot. quadrature: Quadrature object Quadrature used for evaluation. init_cond : InitialCondition object Initial condition used for calculation. """ # Read approximation results with open(data_file + '.json') as json_file: approx_stats = json.load(json_file) # Decode all ndarrays by converting lists approx_stats = {key: decode_ndarray(approx_stats[key]) for key in approx_stats.keys()} approx_stats['basis'] = OrthonormalLegendre(**approx_stats['basis']) approx_stats['mesh'] = Mesh(**approx_stats['mesh']) # Plot exact/approximate results, errors, shock tubes, # and any detector-dependant plots plot_results(quadrature=quadrature, init_cond=init_cond, **approx_stats) # Set paths for plot files if not existing already if not os.path.exists(directory): os.makedirs(directory) # Save plots for identifier in plt.get_figlabels(): # Set path for figure directory if not existing already if not os.path.exists(directory + '/' + identifier): os.makedirs(directory + '/' + identifier) plt.figure(identifier) plt.savefig(directory + '/' + identifier + '/' + plot_name + '.pdf') def plot_results(projection: ndarray, troubled_cell_history: list, time_history: list, mesh: Mesh, wave_speed: float, final_time: float, basis: Basis, quadrature: Quadrature, init_cond: InitialCondition, colors: dict = None, coarse_projection: ndarray = None, multiwavelet_coeffs: ndarray = None) -> None: """Plots results and troubled cells of a projection. Plots exact and approximate solution, errors, and troubled cells of a projection given its evaluation history. If coarse grid and projection are given, solutions are displayed for both coarse and fine grid. Additionally, coefficient details are plotted. Parameters ---------- projection : ndarray Matrix of projection for each polynomial degree. troubled_cell_history : list List of detected troubled cells for each time step. time_history : list List of value of each time step. mesh : Mesh Mesh for calculation. wave_speed : float Speed of wave in rightward direction. final_time : float Final time for which approximation is calculated. basis: Vector object Basis used for calculation. quadrature: Quadrature object Quadrature used for evaluation. init_cond : InitialCondition object Initial condition used for calculation. colors: dict Dictionary of colors used for plots. coarse_projection: ndarray, optional Matrix of projection on coarse grid for each polynomial degree. Default: None. multiwavelet_coeffs: ndarray, optional Matrix of wavelet coefficients. Default: None. """ # Set colors if colors is None: colors = {} colors = _check_colors(colors) # Plot troubled cells plot_shock_tube(mesh.num_grid_cells, troubled_cell_history, time_history) # Determine exact and approximate solution grid, exact = calculate_exact_solution( mesh, wave_speed, final_time, quadrature, init_cond) approx = calculate_approximate_solution( projection[:, 1:-1], quadrature.nodes, basis.polynomial_degree, basis.basis) # Plot multiwavelet solution (fine and coarse grid) if coarse_projection is not None: coarse_mesh = Mesh(num_grid_cells=mesh.num_grid_cells//2, num_ghost_cells=1, left_bound=mesh.bounds[0], right_bound=mesh.bounds[1]) # Plot exact and approximate solutions for coarse mesh coarse_grid, coarse_exact = calculate_exact_solution( coarse_mesh, wave_speed, final_time, quadrature, init_cond) coarse_approx = calculate_approximate_solution( coarse_projection, quadrature.nodes, basis.polynomial_degree, basis.basis) plot_solution_and_approx( coarse_grid, coarse_exact, coarse_approx, colors['coarse_exact'], colors['coarse_approx']) # Plot multiwavelet details plot_details(projection[:, 1:-1], mesh, basis, coarse_projection, multiwavelet_coeffs) plot_solution_and_approx(grid, exact, approx, colors['fine_exact'], colors['fine_approx']) plt.legend(['Exact (Coarse)', 'Approx (Coarse)', 'Exact (Fine)', 'Approx (Fine)']) # Plot regular solution (fine grid) else: plot_solution_and_approx(grid, exact, approx, colors['exact'], colors['approx']) plt.legend(['Exact', 'Approx']) # Calculate errors pointwise_error = np.abs(exact-approx) max_error = np.max(pointwise_error) # Plot errors plot_semilog_error(grid, pointwise_error) plot_error(grid, exact, approx) print('p =', basis.polynomial_degree) print('N =', mesh.num_grid_cells) print('maximum error =', max_error) def _check_colors(colors: dict) -> dict: """Checks plot colors. Checks whether colors for plots were given and sets them if required. Parameters ---------- colors: dict Dictionary containing color strings for plotting. Returns ------- dict Dictionary containing color strings for plotting. """ # Set colors for general plots colors['exact'] = colors.get('exact', 'k-') colors['approx'] = colors.get('approx', 'y') # Set colors for multiwavelet plots colors['fine_exact'] = colors.get('fine_exact', 'k-.') colors['fine_approx'] = colors.get('fine_approx', 'b-.') colors['coarse_exact'] = colors.get('coarse_exact', 'k-') colors['coarse_approx'] = colors.get('coarse_approx', 'y') return colors