diff --git a/ANN_Data_Generator.py b/ANN_Data_Generator.py
index d821b03ae3f436376547019226cfa576f4d40192..81461f99e435d03ce1a2b653027d2e9820f89d8f 100644
--- a/ANN_Data_Generator.py
+++ b/ANN_Data_Generator.py
@@ -13,7 +13,7 @@ import DG_Approximation
 class TrainingDataGenerator(object):
     """Class for training data generator.
 
-    Generate random training data for given initial conditions.
+    Generates random training data for given initial conditions.
 
     Attributes
     ----------
@@ -26,7 +26,7 @@ class TrainingDataGenerator(object):
 
     Methods
     -------
-    build_training_data()
+    build_training_data(num_samples)
         Builds random training data.
 
     """
@@ -151,14 +151,14 @@ class TrainingDataGenerator(object):
             Number of training data samples to generate.
         initial_conditions : list
             List of names of initial conditions for training.
-        is_smooth : boolean
+        is_smooth : bool
             Flag whether initial conditions are smooth.
 
         Returns
         -------
-        input_data : np.array
+        input_data : ndarray
             Array containing input data.
-        output_data : np.array
+        output_data : ndarray
             Array containing output data.
 
         """
@@ -215,11 +215,11 @@ class TrainingDataGenerator(object):
 
         Returns
         -------
-        interval : np.array
+        interval : ndarray
             List containing left and right bound of interval.
-        stencil : np.array
+        stencil : ndarray
             List of cell centers in stencil.
-        grid_spacing: float
+        grid_spacing : float
             Length of cell in grid.
 
         """
@@ -244,16 +244,16 @@ class TrainingDataGenerator(object):
 
     @staticmethod
     def _normalize_data(input_data):
-        """Normalize data.
+        """Normalizes data.
 
         Parameters
         ----------
-        input_data : np.array
+        input_data : ndarray
             Array containing input data.
 
         Returns
         -------
-        np.array
+        ndarray
             Array containing normalized input data.
 
         """
diff --git a/ANN_Model.py b/ANN_Model.py
index 350eab2d1e1047c6138b74a8055040bea9221cd7..e0140b520eee4fd365b7a61798ce16ccfe1845ba 100644
--- a/ANN_Model.py
+++ b/ANN_Model.py
@@ -17,17 +17,24 @@ class ThreeLayerReLu(torch.nn.Module):
 
     Attributes
     ----------
-    name: str
+    name : str
         String containing name of model.
-    input_linear: torch.nn.Module
+    input_linear : torch.nn.Module
         Linear input layer.
-    middle_linear: torch.nn.Module
+    middle_linear : torch.nn.Module
         Linear middle layer.
-    output_linear: torch.nn.Module
+    output_linear : torch.nn.Module
         Linear output layer.
-    output_layer: torch.nn.Module
+    output_layer : torch.nn.Module
         Activation layer for output calculation.
 
+    Methods
+    -------
+    forward(input_data)
+        Executes forward propagation.
+    get_name()
+        Returns string of model name.
+
     """
     def __init__(self, config):
         """Initializes ThreeLayerReLu.
@@ -64,12 +71,12 @@ class ThreeLayerReLu(torch.nn.Module):
 
         Parameters
         ----------
-        input_data: ndarray
+        input_data : ndarray
             2D array containing input data.
 
         Returns
         -------
-        prediction: ndarray
+        prediction : ndarray
             Matrix containing predicted output data.
 
         """
diff --git a/ANN_Training.py b/ANN_Training.py
index 67f11cbbd4ba8c61806c442a1ed38b2274d6941a..e7628a204253885df68c743e6a19eb52431227ec 100644
--- a/ANN_Training.py
+++ b/ANN_Training.py
@@ -12,7 +12,8 @@ TODO: Write-protect all data and models
 TODO: Put legend outside plot (bbox_to_anchor)
 TODO: Put plotting into separate function
 TODO: Reduce number of testing epochs to 50
-TODO: Adapt docstring to uniform standard
+TODO: Adapt docstring to uniform standard -> Done
+TODO: Change maximal line length to 79 (as advised by PEP8)
 
 """
 import numpy as np
@@ -50,11 +51,11 @@ class ModelTrainer(object):
 
     Methods
     -------
-    epoch_training()
+    epoch_training(dataset, num_epochs, verbose)
         Trains model for a given number of epochs.
-    test_model()
+    test_model(training_set, test_set)
         Evaluates predictions of a model.
-    save_model()
+    save_model(directory, model_name)
         Saves state and validation loss of a model.
 
     """
@@ -121,7 +122,7 @@ class ModelTrainer(object):
         dataset : torch.utils.data.dataset.TensorDataset
             Training dataset.
         num_epochs : int, optional
-            Number of epochs for training. If None, set to instance value. Default: None.
+            Number of epochs for training. Default: None (i.e. instance variable).
         verbose : bool, optional
             Flag whether commentary in console is wanted. Default: False.
 
@@ -222,9 +223,9 @@ class ModelTrainer(object):
 
         Parameters
         ----------
-        directory: str
+        directory : str
            Path to directory in which model is saved.
-        model_name: str, optional
+        model_name : str, optional
             Name of model for saving. Default: 'test_model'.
 
         """
@@ -244,9 +245,9 @@ def read_training_data(directory: str,
 
     Parameters
     ----------
-    directory: str
+    directory : str
         Path to directory in which training data is saved.
-    normalized: bool, optional
+    normalized : bool, optional
         Flag whether normalized data should be used. Default: True.
 
     Returns
@@ -267,15 +268,15 @@ def evaluate_models(models: dict, directory: str, num_iterations: int = 100, col
 
     Parameters
     ----------
-    models: dict
+    models : dict
         Dictionary of models to evaluate.
-    directory: str
+    directory : str
         Path to directory for saving resulting plots.
-    num_iterations: int, optional
+    num_iterations : int, optional
         Number of iterations for evaluation. Default: 100.
-    colors: dict, optional
+    colors : dict, optional
         Dictionary containing plotting colors. If None, set to default colors. Default: None.
-    compare_normalization: bool, optional
+    compare_normalization : bool, optional
         Flag whether both normalized and raw data should be evaluated. Default: False.
 
     """
diff --git a/Basis_Function.py b/Basis_Function.py
index 0630198c0d29f1a61d124f31d5c6439fc6340f19..197be81bc29ea0ff6561635cd5770718f92537eb 100644
--- a/Basis_Function.py
+++ b/Basis_Function.py
@@ -17,9 +17,9 @@ class Vector(object):
 
     Attributes
     ----------
-    basis : np.array
+    basis : ndarray
         Array of basis.
-    wavelet : np.array
+    wavelet : ndarray
         Array of wavelet.
 
     Methods
@@ -61,7 +61,7 @@ class Vector(object):
 
         Returns
         -------
-        np.array
+        ndarray
             Vector containing basis evaluated at evaluation point.
 
         """
@@ -81,7 +81,7 @@ class Vector(object):
 
         Returns
         -------
-        np.array
+        ndarray
             Vector containing wavelet evaluated at evaluation point.
 
         """
@@ -108,7 +108,7 @@ class Legendre(Vector):
 
         Returns
         -------
-        np.array
+        ndarray
             Vector containing basis evaluated at evaluation point.
 
         """
@@ -124,7 +124,7 @@ class Legendre(Vector):
 
         Returns
         -------
-        np.array
+        ndarray
             Vector containing Legendre polynomial evaluated at evaluation point.
 
         """
@@ -163,7 +163,7 @@ class OrthonormalLegendre(Legendre):
 
         Returns
         -------
-        np.array
+        ndarray
             Vector containing basis evaluated at evaluation point.
 
         """
@@ -181,7 +181,7 @@ class OrthonormalLegendre(Legendre):
 
         Returns
         -------
-        np.array
+        ndarray
             Vector containing wavelet evaluated at evaluation point.
 
         Notes
@@ -227,7 +227,7 @@ class OrthonormalLegendre(Legendre):
 
         Returns
         -------
-        np.array
+        ndarray
             Array containing the basis projection based on the integrals of the product
             of two basis vectors for each degree combination.
 
@@ -248,7 +248,7 @@ class OrthonormalLegendre(Legendre):
 
         Returns
         -------
-        np.array
+        ndarray
             Matrix containing the integral of basis products.
 
         """
@@ -268,7 +268,7 @@ class OrthonormalLegendre(Legendre):
 
         Returns
         -------
-        np.array
+        ndarray
             Array containing the multiwavelet projection based on the integrals of the product
             of a basis vector and a wavelet vector for each degree combination.
 
@@ -286,12 +286,12 @@ class OrthonormalLegendre(Legendre):
             First parameter.
         second_param : float
             Second parameter.
-        is_left_matrix : boolean
+        is_left_matrix : bool
             Flag whether the left matrix is calculated.
 
         Returns
         -------
-        np.array
+        ndarray
             Matrix containing the integral of products of a basis and a wavelet vector.
 
         """
diff --git a/DG_Approximation.py b/DG_Approximation.py
index fef6c673d36a453f360ccb95585bed972eda0f48..3d24bd0caec0733849d3c9780c92a3c9b4a69d99 100644
--- a/DG_Approximation.py
+++ b/DG_Approximation.py
@@ -25,6 +25,7 @@ TODO: Add way of saving data (np.savez('data/' + name,
 TODO: Outsource scripts into separate directory
 TODO: Allow comparison between ANN training datasets
 TODO: Add a default model state
+TODO: Add type annotations to function heads
 
 """
 import os
@@ -59,9 +60,9 @@ class DGScheme(object):
         Length of a cell in mesh.
     basis : Basis object
         Basis for calculation.
-    mesh : array
+    mesh : ndarray
         List of mesh valuation points.
-    inv_mass : np.array
+    inv_mass : ndarray
         Inverse mass matrix.
 
     Methods
@@ -98,8 +99,8 @@ class DGScheme(object):
             Left boundary of interval. Default: -1.
         right_bound : float, optional
             Right boundary of interval. Default: 1.
-        verbose : boolean, optional
-            Flag whether commentary in console is wanted. Default: False
+        verbose : bool, optional
+            Flag whether commentary in console is wanted. Default: False.
         plot_dir : str, optional
             Path to directory in which plots are saved. Default: 'test'.
         history_threshold : float, optional
@@ -218,6 +219,11 @@ class DGScheme(object):
         Sets plot directory, if not already existing, and saves plots generated during the last
         approximation.
 
+        Parameters
+        ----------
+        plot_name : str
+            Name of plot.
+
         """
         # Set paths for plot files if not existing already
         if not os.path.exists(self._plot_dir):
@@ -273,7 +279,7 @@ class DGScheme(object):
 
         Returns
         -------
-        np.array
+        ndarray
             Matrix containing projection of size (N+2, p+1) with N being the number of grid cells
             and p being the polynomial degree.
 
@@ -323,7 +329,7 @@ class DGScheme(object):
 
         Returns
         -------
-        np.array
+        ndarray
             Matrix containing cell averages and reconstructions for initial projection.
 
         """
diff --git a/Initial_Condition.py b/Initial_Condition.py
index 4015d2af17c32cf66ba2e149364a7fc97749b4d3..625164fd265c8f41d556fbbcc4812a804a940a00 100644
--- a/Initial_Condition.py
+++ b/Initial_Condition.py
@@ -2,8 +2,6 @@
 """
 @author: Laura C. Kühle
 
-TODO: Add is_smooth() to DiscontinuousConstant class -> Done
-
 """
 import numpy as np
 
diff --git a/Limiter.py b/Limiter.py
index 2734df71d9ff9c5559a0fe8d6ebcd5fc68c46c27..567b491491b4c972dc03907eb2997d994622d54c 100644
--- a/Limiter.py
+++ b/Limiter.py
@@ -47,14 +47,14 @@ class Limiter(object):
 
         Parameters
         ----------
-        projection : np.array
+        projection : ndarray
             Matrix of projection for each polynomial degree.
-        cell
+        cell: int
             Index of cell.
 
         Returns
         -------
-        np.array
+        ndarray
             Matrix of updated projection for each polynomial degree.
 
         """
@@ -117,14 +117,14 @@ class MinMod(Limiter):
 
         Parameters
         ----------
-        projection : np.array
+        projection : ndarray
             Matrix of projection for each polynomial degree.
         cell : int
             Index of cell.
 
         Returns
         -------
-        adapted_projection : np.array
+        adapted_projection : ndarray
             Matrix of updated projection for each polynomial degree.
 
         """
@@ -145,7 +145,7 @@ class MinMod(Limiter):
 
         Parameters
         ----------
-        projection : np.array
+        projection : ndarray
             Matrix of projection for each polynomial degree.
         cell : int
             Index of cell.
@@ -154,7 +154,7 @@ class MinMod(Limiter):
 
         Returns
         -------
-        boolean
+        bool
             Flag whether cell should be adjusted.
 
         """
@@ -170,7 +170,7 @@ class MinMod(Limiter):
 
         Parameters
         ----------
-        projection : np.array
+        projection : ndarray
             Matrix of projection for each polynomial degree.
         cell : int
             Index of cell.
@@ -237,7 +237,7 @@ class ModifiedMinMod(MinMod):
 
         Parameters
         ----------
-        projection : np.array
+        projection : ndarray
             Matrix of projection for each polynomial degree.
         cell : int
             Index of cell.
@@ -246,7 +246,7 @@ class ModifiedMinMod(MinMod):
 
         Returns
         -------
-        boolean
+        bool
             Flag whether cell should be adjusted.
 
         """
diff --git a/Plotting.py b/Plotting.py
index 2ce4ec9c53c829c196f78a98a655fc69839e3fad..0406f13f081a3d1fe22eabba5dd45614c2be8f0a 100644
--- a/Plotting.py
+++ b/Plotting.py
@@ -102,7 +102,7 @@ def plot_shock_tube(num_grid_cells: int, troubled_cell_history: list, time_histo
         Number of cells in the mesh. Usually exponential of 2.
     troubled_cell_history : list
         List of detected troubled cells for each time step.
-    time_history: list
+    time_history : list
         List of value of each time step.
 
     """
@@ -223,9 +223,9 @@ def calculate_exact_solution(mesh: ndarray, cell_len: float, wave_speed: float,
 
     Returns
     -------
-    grid: ndarray
+    grid : ndarray
         Array containing evaluation grid for a function.
-    exact: ndarray
+    exact : ndarray
         Array containing exact evaluation of a function.
 
     """
@@ -258,9 +258,9 @@ def plot_classification_accuracy(evaluation_dict: dict, colors: dict) -> None:
 
     Parameters
     ----------
-    evaluation_dict: dict
+    evaluation_dict : dict
         Dictionary containing classification evaluation data.
-    colors: dict
+    colors : dict
         Dictionary containing plotting colors.
 
     """
@@ -292,9 +292,9 @@ def plot_boxplot(evaluation_dict: dict, colors: dict) -> None:
 
     Parameters
     ----------
-    evaluation_dict: dict
+    evaluation_dict : dict
         Dictionary containing classification evaluation data.
-    colors: dict
+    colors : dict
         Dictionary containing plotting colors.
 
     """
diff --git a/Quadrature.py b/Quadrature.py
index 9b4cc8922717d2f6b62d852c327f72bc575cbed7..c9920a461c2e9c43535d2d76acf653e0102267b1 100644
--- a/Quadrature.py
+++ b/Quadrature.py
@@ -15,9 +15,9 @@ class Quadrature(object):
     ----------
     num_eval_points : int
         Number of evaluation points per cell used for approximation.
-    eval_points : np.array
+    eval_points : ndarray
         Evaluation points per cell used for approximation.
-    weights : np.array
+    weights : ndarray
         Weights used for approximation calculation.
 
     Methods
@@ -80,9 +80,9 @@ class Gauss(Quadrature):
     ----------
     num_eval_points : int
         Number of evaluation points per cell used for approximation.
-    eval_points : np.array
+    eval_points : ndarray
         Evaluation points per cell used for approximation.
-    weights : np.array
+    weights : ndarray
         Weights used for approximation calculation.
 
     Methods
diff --git a/Troubled_Cell_Detector.py b/Troubled_Cell_Detector.py
index 0dd15ec5ab2eb6c17869fc9363814f1aa13837f2..e73d6d5d9629002dce37c7a357618bfea3bb88bd 100644
--- a/Troubled_Cell_Detector.py
+++ b/Troubled_Cell_Detector.py
@@ -53,7 +53,7 @@ class TroubledCellDetector(object):
 
         Parameters
         ----------
-        mesh : array
+        mesh : ndarray
             List of mesh valuation points.
         wave_speed : float
             Speed of wave in rightward direction.
@@ -123,7 +123,7 @@ class TroubledCellDetector(object):
 
         Parameters
         ----------
-        projection : np.array
+        projection : ndarray
             Matrix of projection for each polynomial degree.
 
         """
@@ -137,14 +137,14 @@ class TroubledCellDetector(object):
 
         Parameters
         ----------
-        projection : np.array
+        projection : ndarray
             Matrix of projection for each polynomial degree.
         stencil_length : int
             Size of data array.
 
         Returns
         -------
-        np.array
+        ndarray
             Matrix containing cell averages and reconstructions for initial projection.
 
         """
@@ -164,11 +164,11 @@ class TroubledCellDetector(object):
 
         Parameters
         ----------
-        projection : np.array
+        projection : ndarray
             Matrix of projection for each polynomial degree.
         troubled_cell_history : list
             List of detected troubled cells for each time step.
-        time_history:
+        time_history : list
             List of value of each time step.
 
         """
@@ -184,12 +184,12 @@ class TroubledCellDetector(object):
 
         Parameters
         ----------
-        projection : np.array
+        projection : ndarray
             Matrix of projection for each polynomial degree.
 
         Returns
         -------
-        max_error
+        max_error : float
             Maximum error between exact and approximate solution.
 
         """
@@ -225,9 +225,14 @@ class NoDetection(TroubledCellDetector):
 
         Parameters
         ----------
-        projection : np.array
+        projection : ndarray
             Matrix of projection for each polynomial degree.
 
+        Returns
+        -------
+        list
+            List of indices for all detected troubled cells.
+
         """
         return []
 
@@ -239,7 +244,7 @@ class ArtificialNeuralNetwork(TroubledCellDetector):
     ----------
     stencil_length : int
         Size of input data array.
-    model : ANNModel object
+    model : torch.nn.Model
         ANN model instance for evaluation.
 
     Methods
@@ -280,7 +285,7 @@ class ArtificialNeuralNetwork(TroubledCellDetector):
 
         Parameters
         ----------
-        projection : np.array
+        projection : ndarray
             Matrix of projection for each polynomial degree.
 
         Returns
@@ -345,7 +350,7 @@ class WaveletDetector(TroubledCellDetector):
 
         Parameters
         ----------
-        projection : np.array
+        projection : ndarray
             Matrix of projection for each polynomial degree.
 
         Returns
@@ -362,12 +367,12 @@ class WaveletDetector(TroubledCellDetector):
 
         Parameters
         ----------
-        projection : np.array
+        projection : ndarray
             Matrix of projection for each polynomial degree.
 
         Returns
         -------
-        np.array
+        ndarray
             Matrix of wavelet coefficients.
 
         """
@@ -383,9 +388,9 @@ class WaveletDetector(TroubledCellDetector):
 
         Parameters
         ----------
-        multiwavelet_coeffs : np.array
+        multiwavelet_coeffs : ndarray
             Matrix of multiwavelet coefficients.
-        projection : np.array
+        projection : ndarray
             Matrix of projection for each polynomial degree.
 
         Returns
@@ -403,11 +408,11 @@ class WaveletDetector(TroubledCellDetector):
 
         Parameters
         ----------
-        projection : np.array
+        projection : ndarray
             Matrix of projection for each polynomial degree.
         troubled_cell_history : list
             List of detected troubled cells for each time step.
-        time_history:
+        time_history : list
             List of value of each time step.
 
         """
@@ -424,12 +429,12 @@ class WaveletDetector(TroubledCellDetector):
 
         Parameters
         ----------
-        projection : np.array
+        projection : ndarray
             Matrix of projection for each polynomial degree.
 
         Returns
         -------
-        np.array
+        ndarray
             Matrix of projection on coarse grid for each polynomial degree.
 
         """
@@ -453,12 +458,12 @@ class WaveletDetector(TroubledCellDetector):
 
         Parameters
         ----------
-        projection : np.array
+        projection : ndarray
             Matrix of projection for each polynomial degree.
 
         Returns
         -------
-        max_error
+        max_error : float
             Maximum error between exact and approximate solution.
 
         """
@@ -487,7 +492,7 @@ class WaveletDetector(TroubledCellDetector):
 
         Parameters
         ----------
-        projection : np.array
+        projection : ndarray
             Matrix of projection for each polynomial degree.
 
         """
@@ -540,9 +545,9 @@ class Boxplot(WaveletDetector):
 
         Parameters
         ----------
-        multiwavelet_coeffs : np.array
+        multiwavelet_coeffs : ndarray
             Matrix of multiwavelet coefficients.
-        projection : np.array
+        projection : ndarray
             Matrix of projection for each polynomial degree.
 
         Returns
@@ -619,9 +624,9 @@ class Theoretical(WaveletDetector):
 
         Parameters
         ----------
-        multiwavelet_coeffs : np.array
+        multiwavelet_coeffs : ndarray
             Matrix of multiwavelet coefficients.
-        projection : np.array
+        projection : ndarray
             Matrix of projection for each polynomial degree.
 
         Returns
@@ -645,16 +650,16 @@ class Theoretical(WaveletDetector):
 
         Parameters
         ----------
-        multiwavelet_coeffs : np.array
+        multiwavelet_coeffs : ndarray
             Matrix of multiwavelet coefficients.
         cell : int
             Index of cell.
-        max_avg
+        max_avg : float
             Maximum average of projection.
 
         Returns
         -------
-        boolean
+        bool
             Flag whether cell is troubled.
 
         """
diff --git a/Update_Scheme.py b/Update_Scheme.py
index 5d91109a0eb175634b76ebabb3f07c813dc077ef..8200949a898d702d668abba2a9cce4e1e8b2608b 100644
--- a/Update_Scheme.py
+++ b/Update_Scheme.py
@@ -16,9 +16,9 @@ class UpdateScheme(object):
 
     Attributes
     ----------
-    stiffness_matrix : np.array
+    stiffness_matrix : ndarray
         Matrix
-    boundary_matrix : np.array
+    boundary_matrix : ndarray
         Matrix
 
     Methods
@@ -85,14 +85,14 @@ class UpdateScheme(object):
 
         Parameters
         ----------
-        projection : np.array
+        projection : ndarray
             Matrix of projection for each polynomial degree.
         cfl_number : float
             CFL number to ensure stability.
 
         Returns
         -------
-        current_projection : np.array
+        current_projection : ndarray
             Matrix of projection of current update step for each polynomial degree.
         troubled_cells : list
             List of indices for all detected troubled cells.
@@ -107,14 +107,14 @@ class UpdateScheme(object):
 
         Parameters
         ----------
-        projection : np.array
+        projection : ndarray
             Matrix of projection for each polynomial degree.
         cfl_number : float
             CFL number to ensure stability.
 
         Returns
         -------
-        current_projection : np.array
+        current_projection : ndarray
             Matrix of projection of current update step for each polynomial degree.
         troubled_cells : list
             List of indices for all detected troubled cells.
@@ -127,12 +127,12 @@ class UpdateScheme(object):
 
         Parameters
         ----------
-        current_projection : np.array
+        current_projection : ndarray
             Matrix of projection of current update step for each polynomial degree.
 
         Returns
         -------
-        new_projection : np.array
+        new_projection : ndarray
             Matrix of updated projection for each polynomial degree.
         troubled_cells : list
             List of indices for all detected troubled cells.
@@ -153,12 +153,12 @@ class UpdateScheme(object):
 
         Parameters
         ----------
-        current_projection : np.array
+        current_projection : ndarray
             Matrix of projection of current update step for each polynomial degree.
 
         Returns
         -------
-        current_projection : np.array
+        current_projection : ndarray
             Matrix of projection of current update step for each polynomial degree.
 
         """
@@ -181,14 +181,14 @@ class SSPRK3(UpdateScheme):
 
         Parameters
         ----------
-        projection : np.array
+        projection : ndarray
             Matrix of projection for each polynomial degree.
         cfl_number : float
             CFL number to ensure stability.
 
         Returns
         -------
-        current_projection : np.array
+        current_projection : ndarray
             Matrix of projection of current update step for each polynomial degree.
         troubled_cells : list
             List of indices for all detected troubled cells.
@@ -213,18 +213,18 @@ class SSPRK3(UpdateScheme):
         return current_projection, troubled_cells
 
     def _apply_first_step(self, original_projection, cfl_number):
-        """Apply first step of SSPRK3.
+        """Applies first step of SSPRK3.
 
         Parameters
         ----------
-        original_projection : np.array
+        original_projection : ndarray
             Matrix of original projection for each polynomial degree.
         cfl_number : float
             CFL number to ensure stability.
 
         Returns
         -------
-        np.array
+        ndarray
             Matrix of updated projection for each polynomial degree.
 
         """
@@ -232,20 +232,20 @@ class SSPRK3(UpdateScheme):
         return original_projection + (cfl_number*right_hand_side)
 
     def _apply_second_step(self, original_projection, current_projection, cfl_number):
-        """Apply second step of SSPRK3.
+        """Applies second step of SSPRK3.
 
         Parameters
         ----------
-        original_projection : np.array
+        original_projection : ndarray
             Matrix of original projection for each polynomial degree.
-        current_projection : np.array
+        current_projection : ndarray
             Matrix of projection of current update step for each polynomial degree.
         cfl_number : float
             CFL number to ensure stability.
 
         Returns
         -------
-        np.array
+        ndarray
             Matrix of updated projection for each polynomial degree.
 
         """
@@ -253,20 +253,20 @@ class SSPRK3(UpdateScheme):
         return 1/4 * (3*original_projection + (current_projection + cfl_number*right_hand_side))
 
     def _apply_third_step(self, original_projection, current_projection, cfl_number):
-        """Apply third step of SSPRK3.
+        """Applies third step of SSPRK3.
 
         Parameter
         ---------
-        original_projection : np.array
+        original_projection : ndarray
             Matrix of original projection for each polynomial degree.
-        current_projection : np.array
+        current_projection : ndarray
             Matrix of projection of current update step for each polynomial degree.
         cfl_number : float
             CFL number to ensure stability.
 
         Returns
         -------
-        np.array
+        ndarray
             Matrix of updated projection for each polynomial degree.
 
         """
@@ -274,16 +274,16 @@ class SSPRK3(UpdateScheme):
         return 1/3 * (original_projection + 2*(current_projection + cfl_number*right_hand_side))
 
     def _update_right_hand_side(self, current_projection):
-        """Update right-hand side.
+        """Updates right-hand side.
 
         Parameter
         ---------
-        current_projection : np.array
+        current_projection : ndarray
             Matrix of projection of current update step for each polynomial degree.
 
         Returns
         -------
-        np.array
+        ndarray
             Matrix of right-hand side.
 
         """