From 53c9e96e7a21687d1efb55da209415d865e35fb2 Mon Sep 17 00:00:00 2001
From: =?UTF-8?q?K=C3=BChle=2C=20Laura=20Christine=20=28lakue103=29?=
 <laura.kuehle@uni-duesseldorf.de>
Date: Tue, 3 Aug 2021 14:52:58 +0200
Subject: [PATCH] Removed unnecessary comments.

---
 ANN_Data_Generator.py     |  8 +-------
 Main.py                   | 18 ++++--------------
 Troubled_Cell_Detector.py | 31 -------------------------------
 3 files changed, 5 insertions(+), 52 deletions(-)

diff --git a/ANN_Data_Generator.py b/ANN_Data_Generator.py
index c6a22bb..860ef55 100644
--- a/ANN_Data_Generator.py
+++ b/ANN_Data_Generator.py
@@ -112,7 +112,6 @@ class TrainingDataGenerator(object):
 
             # Calculating Cell centers for a given 1D domain with n elements, and
             # Calculating Corresponding Legendre Basis Coefficients for given polynomial_degree
-            num_grid_cells = self._stencil_length  # former: 3
             # Create stencil and basis_coefficients for smooth_function mapped onto stencil
             interval, centers, h = self._build_stencil()
             centers = [center[0] for center in centers]
@@ -121,7 +120,7 @@ class TrainingDataGenerator(object):
 
             left_bound, right_bound = interval
             dg_scheme = DG_Approximation.DGScheme('NoDetection', polynomial_degree=polynomial_degree,
-                                                  num_grid_cells=num_grid_cells, left_bound=left_bound,
+                                                  num_grid_cells=self._stencil_length, left_bound=left_bound,
                                                   right_bound=right_bound, quadrature='Gauss',
                                                   quadrature_config={'num_eval_points': polynomial_degree+1})
 
@@ -143,11 +142,6 @@ class TrainingDataGenerator(object):
         order = np.random.permutation(num_samples)
         input_data = input_data[order]
 
-        # for i in range(len(test_data)):
-        #     print(i)
-        #     print(test_data[i])
-        # print()
-
         output_data = np.zeros((num_samples, 2))
         if is_smooth:
             output_data[:, 1] = np.ones(num_samples)
diff --git a/Main.py b/Main.py
index 0c7dae2..5ae4083 100644
--- a/Main.py
+++ b/Main.py
@@ -14,7 +14,7 @@ tic = timeit.default_timer()
 alpha = 1
 p = 2
 cfl = 0.2
-N = 256    # 40 elements work well for Condition 3
+N = 4    # 40 elements work well for Condition 3
 finalTime = 1
 xL = -1
 xR = 1
@@ -38,9 +38,10 @@ limiter_config['erase_degree'] = 0
 
 quadrature_config['num_eval_points'] = 12  # 12
 
-detector = 'Theoretical'
+# detector = 'Theoretical'
+detector = 'ArtificialNeuralNetwork'
 update_scheme = 'SSPRK3'
-init_cond = 'Box'
+init_cond = 'Sine'
 limiter = 'ModifiedMinMod'
 quadrature = 'Gauss'
 dg_scheme = DGScheme(detector, detector_config=detector_config, init_cond=init_cond, init_config=init_config,
@@ -49,22 +50,11 @@ dg_scheme = DGScheme(detector, detector_config=detector_config, init_cond=init_c
                      polynomial_degree=p, cfl_number=cfl, num_grid_cells=N, final_time=finalTime,
                      verbose=False, left_bound=xL, right_bound=xR)
 
-# __, __, troubled_cells, __ =
 dg_scheme.approximate()
 dg_scheme.save_plots()
 
 toc = timeit.default_timer()
 print('Time:', toc-tic)
-# =============================================================================
-#
-# print(troubled_cells)
-#
-# print(dg_scheme.update_scheme)
-# print(dg_scheme.init_cond)
-# print(dg_scheme.detector)
-# print(dg_scheme.limiter)
-# # print(dg_scheme.projection)
-# =============================================================================
 
 # if __name__ == '__main__':
 #     pass
diff --git a/Troubled_Cell_Detector.py b/Troubled_Cell_Detector.py
index 15c32b0..8a6b5a2 100644
--- a/Troubled_Cell_Detector.py
+++ b/Troubled_Cell_Detector.py
@@ -280,32 +280,6 @@ class WaveletDetector(TroubledCellDetector):
         basis = self._basis.get_basis_vector()
         wavelet = self._basis.get_wavelet_vector()
 
-########################################################################################################################
-        # For later consideration
-########################################################################################################################
-        # tic = timeit.default_timer()
-        # averaged_projection1 = []
-        # wavelet_projection1 = []
-        # for degree in range(self._polynomial_degree + 1):
-        #     leftMesh = coarse_projection[degree] * basis[degree].subs(x, -1 / 2)
-        #     rightMesh = coarse_projection[degree] * basis[degree].subs(x, 1 / 2)
-        #     leftTest = multiwavelet_coeffs[degree] * wavelet[degree].subs(z, 1 / 2) \
-        #                * (-1)**(self._polynomial_degree + 1 + degree)
-        #     rightTest = multiwavelet_coeffs[degree] * wavelet[degree].subs(z, 1 / 2)
-        #     newRowMesh = []
-        #     newRowTest = []
-        #     for i in range(len(coarse_projection[0])):
-        #         newRowMesh.append(leftMesh[i])
-        #         newRowMesh.append(rightMesh[i])
-        #         newRowTest.append(leftTest[i])
-        #         newRowTest.append(rightTest[i])
-        #     averaged_projection1.append(newRowMesh)
-        #     wavelet_projection1.append(newRowTest)
-        # toc = timeit.default_timer()
-        # print('Loop:', toc-tic)
-########################################################################################################################
-
-        # tic = timeit.default_timer()
         averaged_projection = [[coarse_projection[degree][cell] * basis[degree].subs(x, value)
                                 for cell in range(self._num_coarse_grid_cells)
                                 for value in [-0.5, 0.5]]
@@ -315,11 +289,6 @@ class WaveletDetector(TroubledCellDetector):
                                for cell in range(self._num_coarse_grid_cells)
                                for value in [(-1) ** (self._polynomial_degree + degree + 1), 1]]
                               for degree in range(self._polynomial_degree + 1)]
-        # toc = timeit.default_timer()
-        # print('List:', toc-tic)
-
-        # print(averaged_projection1 == averaged_projection)
-        # print(wavelet_projection1 == wavelet_projection)
 
         projected_coarse = np.sum(averaged_projection, axis=0)
         projected_fine = np.sum([fine_projection[degree] * basis[degree].subs(x, 0)
-- 
GitLab