diff --git a/Troubled_Cell_Detector.py b/Troubled_Cell_Detector.py index 7a637c377440bc9a90a752c878d3ca0cb409a717..4d89440c03d7e219bb8ab2a5fe61925e0c1738c9 100644 --- a/Troubled_Cell_Detector.py +++ b/Troubled_Cell_Detector.py @@ -4,7 +4,7 @@ TODO: Adjust TCs for wavelet detectors (sliding window over all cells instead of every second) -> Done -TODO: Replace num_coarse_grid_cells with mesh +TODO: Replace num_coarse_grid_cells with mesh -> Done TODO: Introduce Adjusted Outer Fence method in Boxplot using global_mean TODO: Introduce overlapping cell for adjacent folds in Boxplot TODO: Introduce lower/upper extreme outliers in Boxplot @@ -226,8 +226,7 @@ class WaveletDetector(TroubledCellDetector): """ super()._reset(config) - # Set additional necessary parameter - self._num_coarse_grid_cells = self._mesh.num_grid_cells//2 + # Set wavelet projections self._wavelet_projection_left, self._wavelet_projection_right \ = self._basis.multiwavelet_projection @@ -311,7 +310,7 @@ class WaveletDetector(TroubledCellDetector): # Calculate projection on coarse mesh output_matrix = [] - for i in range(self._num_coarse_grid_cells): + for i in range(self._mesh.num_grid_cells//2): new_entry = 0.5 * ( projection[:, 2 * i] @ basis_projection_left + projection[:, 2 * i + 1] @ basis_projection_right) @@ -496,6 +495,6 @@ class Theoretical(WaveletDetector): for degree in range( self._basis.polynomial_degree+1))/max_avg eps = self._cutoff_factor\ - / (self._mesh.cell_len*self._num_coarse_grid_cells*2) + / (self._mesh.cell_len*self._mesh.num_grid_cells) return max_value > eps