diff --git a/contents.tex b/contents.tex
index 8ed19abde229028c045e3f0ae334f2ba00e19af6..e0b3dd80f1e11ec00ed96f9a3235f249a6cd874b 100644
--- a/contents.tex
+++ b/contents.tex
@@ -170,32 +170,35 @@ Minimax-Algorithmus aufgeführt.
   \begin{algorithmic}[1]
     \Function{Minimax}{Game State Tree: $G^n$}
       \State bestValue \(\gets -\infty\)
-      \State \(bestAction \gets \) NIL
+      \State \(\mathit{bestAction} \gets \) NIL
       \ForAll{\(G^n_a \in S(G^n)\)}
-        \State \(value = \) \Call{MinimaxValue}{\(G^n_a\), true}
-        \If{\(value > bestValue\)} \Comment{Aktualisiere besten Wert}
-          \State \(bestValue \gets value\)
-          \State \(bestAction \gets a\)
+        \State \(\mathit{value} = \) \Call{MinimaxValue}{\(G^n_a\), true}
+        \If{\(\mathit{value} > \mathit{bestValue}\)}
+          \Comment{Aktualisiere besten Wert}
+          \State \(\mathit{bestValue} \gets \mathit{value}\)
+          \State \(\mathit{bestAction} \gets a\)
         \EndIf
       \EndFor
-      \State \Return \(bestAction\)
+      \State \Return \(\mathit{bestAction}\)
     \EndFunction
     \Statex
-    \Function{MinimaxValue}{Game State Tree: $G^n$ Boolean: $ourTurn$}
+    \Function{MinimaxValue}{Game State Tree: $G^n$, Boolean: $\mathit{ourTurn}$}
       \If{\(D(G^n)=0\)}
         \State \Return \Call{Heuristic}{root(\(G^n\))}
-      \ElsIf{\(ourTurn\)}
-        \State \(maxValue \gets -\infty \)
+      \ElsIf{\(\mathit{ourTurn}\)}
+        \State \(\mathit{maxValue} \gets -\infty \)
         \ForAll{\(S \in S(G^n)\)}
-          \State \(newValue \gets \) \Call{MinimaxValue}{\(S\), false}
-          \State \(maxValue \gets max(newValue, maxValue)\)
+          \State \(\mathit{newValue} \gets \) \Call{MinimaxValue}{\(S\), false}
+          \State \(\mathit{maxValue} \gets
+            \max(\mathit{newValue}, \mathit{maxValue})\)
         \EndFor
         \State \Return \(maxValue\)
       \Else
         \State \(minValue \gets +\infty \)
         \ForAll{\(S \in S(G^n)\)}
-          \State \(newValue \gets \) \Call{MinimaxValue}{\(S\), true}
-          \State \(minValue \gets \min(newValue, minValue)\)
+          \State \(\mathit{newValue} \gets \) \Call{MinimaxValue}{\(S\), true}
+          \State \(\mathit{minValue} \gets
+            \min(\mathit{newValue}, \mathit{minValue})\)
         \EndFor
         \State \Return \(minValue\)
       \EndIf