
module Promises
extends Integers, Sequences, FiniteSets

Objects, Heaps, and Methods

constant Id , Value
A value represents something like an int or a boolean. An Id is the heap address of an object.

We can represent null as some particular Id . We assume that an Id is not a Value.

assume Id ∩Value = {}

Some TLA+ Notation

A function f has a domain written domain f . The function assigns a value f [x] for every element

x in domain f . The domain of a function can be an infinite set.

[S → T] is the set of all functions f with domain S such that f [x] is in the set T for all x in S .

A record r is a function whose domain is a non-empty finite set of strings, where we can write
r .fldName as an abbreviation for r [“fldName”].

[foo 7→ 42, bar 7→ v] is the record r whose domain is {“foo”, “bar”} such that r .foo = 42 and

r .bar = v .

[foo : Nat , bar : V] is the set of all records [foo 7→ n, bar 7→ v] such that n is in Nat and v is in

V .

Object ∆=
An Object is a record containing a type field that is a string. The fields represent the fields of the
object. I don’t bother representing usual types and classes. The classic class structure can be
represented by an Object having a class field whose value is the id of an Object of type “class”.
The fields of the latter Object would represent the static fields of the class. The representation
of methods is described below.

We assume that a Value is not an Object .

let Rcd(Labels) ∆= {R ∈ [Labels → Value ∪ Id] : R.type ∈ string}
LabelSets ∆= {S ∈ subset string : IsFiniteSet(S) ∧ “type” ∈ S}

in union {Rcd(Labels) : Labels ∈ LabelSets}

assume Object ∩Value = {}

Heap ∆= [Id → Object ∪ {〈〉}]
A Heap maps an Dd either to an Object or to 〈〉, the latter meaning that the Id is not the Id

of any object.

ReachableFrom(obj , H) ∆=
This is the set of Ids reachable from an Object obj in the heap H . If obj is not an Object , it
is the empty set. Otherwise, it consists of all the Ids that are values of fields of obj , together
with all the Ids reachable from objects in heap H with those Ids. It is defined in terms of two
operators IdsOf and R.

let IdsOf (o) ∆=
The set of all values of fields of object obj that are Ids, or the empty set if obj is not

an object.

1

if o ∈ Object
then {i ∈ {o[x] : x ∈ domain o} : i ∈ Id}
else {}

R[n ∈ Nat] ∆=
Defines R[n] to be the set of Ids reachable from id by a path of length at most n in

the heap H .

if n = 0 then IdsOf (obj)
else R[n − 1] ∪ {IdsOf (H [i]) : i ∈ R[n − 1]}

in union {R[n] : n ∈ Nat}

constant Method , Eval(, , ,)
We assume that there are only static methods. A method specifies the result of executing a
method of some object. We are considering the execution of a method to be an atomic action.
The result of executing a method M of an object obj with a list args of arguments args when
the value of the heap is H is Eval(M , obj , args, H), which is a record consisting of two fields:

- A result field that equals the value returned by the method.

- A heap field that is the heap after the execution.

For convenience, we assume that a method is a value.

assume Method ⊆ Value

Promises

ResolvedPromise ∆=
[type : {“promise”},
resolved : {true},
value : Value ∪ Id
]

UnresolvedPromise ∆=
A promise is resolved by executing a method to compute its value. There are two kinds of
promises: when promises and the other kind. A when promise is returned by executing a
whenFulfilled such as

foo.whenFulfilled(arg ⇒ some code)

The promise is specified by an object with these fields:

- A single-argument Method , which is dynamically created by executing the whenFulfilled . In
the example, it is the Method that would be written in the class containing the expression as

newMethod(arg){some code}

- The Id of the object for which the whenFulfilled method was executed. In the example,
references to this in some code refer to the fields of this object.

- A promise for method’s the single argument. In the example, it is a promise for foo.

A non-when promise is one produced by executing something like

foo.Bar(arg1, . . . , argN)

The promise is specified by an object with these fields:

2

- A Method that represents the Bar method of the appropriate class.

- A promise for an Id of the object foo.

- The argument list.

Because a promise is an Object , promises can appear just like any other object in the heap.
They can also be used as arguments to methods.

[type : {“promise”},
resolved : {false},
method : Method ,
isWhen : {true},
objId : Id ,
argPromise : Id
]

∪

[type : {“promise”},
resolved : {false},
method : Method ,
isWhen : {false},
objIdPromise : Id ,
args : Seq(Value ∪ Id)
]

Promise ∆= ResolvedPromise ∪UnresolvedPromise

OKObject ∆= {o ∈ Object : o.type = “promise”⇒ o ∈ Promise}
The set Object minus those objects of type “promise” that are not in the set Promise.

OKHeap ∆=
The set of Heaps such that:

- There are no dangling pointers (fields of objects that are Ids that point to nothing).

- Every Id in that should be the Id of a promise is.

- There are no cycles of promises

{H ∈ Heap :
∀ id ∈ Id :
let obj ∆= H [id]
in (obj 6= 〈〉)⇒

∧ obj ∈ OKObject
∧ ∀fldName ∈ domain obj :

(obj [fldName] ∈ Id)⇒ (H [obj [fldName]] 6= 〈〉)
∧ (obj ∈ Promise) ∧ (¬obj .resolved)⇒

∧ if obj .isWhen then H [obj .argPromise] ∈ Promise
else H [obj .objIdPromise] ∈ Promise

∧ let thePromise(i) ∆=

3

if H [i].resolved
then i
else if H [i].isWhen then H [i].argPromise

else H [i].objIdPromise
R[n ∈ Nat] ∆=

if n = 0 then id
else thePromise(R[n − 1])

in ∀n ∈ Nat \ {0} : R[n] 6= id }

ReachableWithoutPromises(obj , H) ∆=
Like ReachableFrom, except that it does not follow links inside objects of type “promise”, which

as described above represent promises.

let IdsOf (o) ∆=
The set of all values of fields of object obj that are Ids, or the empty set if obj is not

an object.

if (o ∈ Object) ∧ (o.type 6= “promise”)
then {i ∈ {o[x] : x ∈ domain o} : i ∈ Id}
else {}

R[n ∈ Nat] ∆=
Defines R[n] to be the set of Ids reachable from id by a path of length at most n in

the heap H .

if n = 0 then IdsOf (obj)
else R[n − 1] ∪ {IdsOf (H [i]) : i ∈ R[n − 1]}

in union {R[n] : n ∈ Nat}

assume ∀M ∈ Method ,
obj ∈ OKObject ,
args ∈ Seq(Value ∪ Id) :
let E (H) ∆= Eval(M , obj , args, H)

UseableId(H) ∆= ReachableWithoutPromises(obj , H) ∪
union {ReachableWithoutPromises(args[i], H) :

i ∈ 1 . . Len(args)}
in ∧ ∀H ∈ OKHeap :

∧ E (H) ∈ [result : Value ∪ Id , heap : OKHeap]
For convenience, we assume that evaluating method M produces some
result and new heap for arbitrary OKObject obj , argument list args,
and heap H even when they are meaningless–for example, if the result
of executing M depends on the values of fields of obj that do not exist.

∧ ∀ id ∈ Id :
(H [id] 6= E (H).heap[id])⇒ ∨ id ∈ UseableId(H)

∨H [id] = 〈〉
Evaluating M can modify the heap only by modifying objects whose

Id is reachable from obj or an argument and by creating new objects.

∧ ∀H 1, H 2 ∈ OKHeap :
∧UseableId(H 1) = UseableId(H 2)

4

∧ ∀ id ∈ UseableId(H 1) : H 1[id] = H 2[id]
⇒ ∧ E (H 1).result = E (H 2).result
∧ ∀ id ∈ Id : (H 1[id] 6= E (H 1).heap[id])⇒

(E (H 1).heap[id] = E (H 2).heap[id])
If two heaps are the same on the Ids reachable from obj and the argu-
ments, then evaluating M in the two heaps produces the same result, and
it produces the same changes to the two heaps.

Actions

variable heap The variable whose value is the current Heap.

ResolveWhenPromise(id) ∆=
The action that modifies the heap by resolving a when promise when the promise it is waiting

for has been resolved.

let promise ∆= heap[id]
in ∧ promise ∈ Promise

∧ ¬promise.resolved
∧ promise.isWhen
∧ heap[promise.argPromise].resolved
∧ heap′ =

let E ∆= Eval(promise.method ,
heap[promise.objId],
〈heap[promise.argPromise].value〉,
heap)

in [E .heap except ! [id] = [type 7→ “promise”,
resolved 7→ true,
value 7→ E .result]]

ResolveNonWhenPromise(id) ∆=
The action that modifies the heap by resolving a non-when promise when the promise it is

waiting for has been resolved.

let promise ∆= heap[id]
in ∧ promise ∈ Promise

∧ ¬promise.resolved
∧ ¬promise.isWhen
∧ heap[promise.objIdPromise].resolved
∧ heap′ =

let E ∆= Eval(promise.method ,
heap[heap[promise.objIdPromise].value],
promise.args,
heap)

in [E .heap except ! [id] = [type 7→ “promise”,
resolved 7→ true,
value 7→ E .result]]

GarbageCollectResolvedPromise(id) ∆=

5

The action that garbage collects a promise that has been resolved and whose value is no longer

usable.

∧ heap[id] ∈ Promise
∧ heap[id].resolved
∧ ∀ i ∈ Id \ {id} :

(heap[i] 6= 〈〉)⇒ ∀fldName ∈ domain i :
(heap[i][fldName] ∈ Id)⇒

(heap[heap[i][fldName]] 6= id)
∧ heap′ = [heap except ! [id] = 〈〉]

\ * Modification History

\ * Last modified Sun Mar 06 11:28:30 PST 2011 by lamport

\ * Created Sat Mar 05 13:24:42 PST 2011 by lamport

6

