MODULE RemoveRedundantParens

EXTENDS Integers, Sequences
CONSTANT Tokld
Token = [type : {“left”, “right”, “other”}, id : ToklId)

RECURSIVE ParenDepth(_, )

This is a comment in which ¢.type > t.id so it looks nice.

ParenDepth(seq, i) =

IF:=0
THEN 0
ELSE CASE seq[i].type = "left” — ParenDepth(seq, i — 1) + 1
Oseqli].type = “right” — ParenDepth(seq, i — 1) — 1
Oseqli].type = “other” — ParenDepth(seq, i — 1)

IsWellFormed(seq) = AVi € 1.. Len(seq) : ParenDepth(seq, i) > 0
A ParenDepth(seq, Len(seq)) =0

ExprOfMazLen(n) =

UNION {{s € [1.. i — Token] : IsWellFormed(s)}:i € 0..n}

The basic idea of the following algorithm is that it walks along the expression keeping
unmatchedLeft equal to the sequence

(=1, =141, ..., i1 +45-1), (622, 4242, ..., i_24+5-2), ...)
where the element (i_k, ..., i_k+j_k) means that there is a sequence of consecutive left parens at
position i_k, ... , ik + j_k for which the corresponding right parens have not been encountered.

Left parens and “other” tokens are put into out as they are found. Left parens are removed from
out when their matching right parens are found and the pair are found to be redundant. A right
parens is also put into out immediately and removed when it is determined to be redundant, which
will be on the next iteration. Note that left parens are removed from out from right to left, so
the index of the left paren that is to be removed has not been changed because of the previous
removal of a left paren.

—algorithm Remove {
variables in € ExprOfMazLen(5),
out = (),
unmatchedLeft = (),
i=1,
justFoundLeft = FALSE,
\ * true means that the token at i — 1 is a left paren
justFoundRight = FALSE;
\ * true means that the token at i — 1 is a right paren
{while(i < Len(in)){
if (in[i].type = “left”){
if (justFoundLeft){
unmatchedLeft|Len(unmatchedLeft)] :=
Append(unmatchedLeft| Len(unmatchedLeft)], );
out := Append(out, in[i])



\ * Modification History
\ * Last modified Mon Dec 19 18:17:21 PST 2011 by lamport
\ * Created Mon Dec 19 17:20:10 PST 2011 by lamport



