MODULE MissionariesAndCannibals

This module specifies a system that models the one described in the missionaries and cannibals
problem. On 20 December 2018, Wikipedia contained the following description of this problem.

[T)hree missionaries and three cannibals must cross a river using a boat which can carry at
most two people, under the constraint that, for both banks, if there are missionaries present on
the bank, they cannot be outnumbered by cannibals (if they were, the cannibals would eat the
missionaries). The boat cannot cross the river by itself with no people on board.

As explained below, we can use the specification and the TLC model checker to find a solution
to the problem.

The following EXTENDS statement imports definitions of the ordinary arithmetic operations on
integers and the definition of the Cardinality operator, where Cardinality(S) is the number of
elements in S if S is a finite set.

EXTENDS Integers, FiniteSets

Next comes the declaration of the sets of missionaries and cannibals.

CONSTANTS Missionaries, Cannibals

In TLA+, an execution of a system is described as a sequence of states, where a state is an
assignment of values to variables. A pair of successive states in an execution is called a step. We
write s — t to indicate that s, ¢ is a step in an execution.

The first thing to do when writing a spec of a system is to decide what should constitute a
step. There are a number of ways to describe the cannibals and missionaries that differ in what
constitutes a step. For example, we could consider a single person getting into or out of the boat
to be a step. Breaking the execution into many small steps gives a more accurate description of
the physical system, but using fewer big steps provides a simpler spec. We write a spec for a
purpose, and we want to use the fewest steps that gives a sufficiently accurate description for that
purpose. Our purpose is to find a solution to the cannibals and missionaries problem. A little
thought shows that this can be done by a specification in which a step consists of moving a set of
people with the boat from one bank to the other.

Having decided what a step is, we can see that a state of the system must describe on which bank
the boat is and what people are on each bank. What I find to be a simple and natural way to
describe that state is with the following two variables:

bank_of_boat: In any system execution, bank_of _boat will equal the bank of the river on which
the boat is docked.

who_is_on_bank: In any execution of the system, the value of
who_is_on_bank[b] will be the set of people on bank b.

Although we could declare a constant Banks to be the set of riverbanks, it’s more convenient
to simply give them names. Let’s call them “E" (for east bank) and “W" (for west bank), so
{“E", “W"} is the set of riverbanks.

VARIABLES bank_of _boat, who_is_on_bank

Although not needed to specify the system, it’s a good idea to tell the reader of the spec the types
of values that the variables will have in any reachable state of the system. This is conventionally
done by defining a state predicate called TypeOK.

The value of bank_of_boat will be either “E” or “W" — that is, an element of the set { “E", “W" }.
(The operator € means “is an element of”, and is written by mathematicians as a Greek epsilon.)

The value of who_is_on_bank will be what programmers would call an array indexed by the set
{“E", “W"}, and what mathematicians would call a function with domain {“E”, “W"}. (Many
common primitive programming languages permit only arrays with index-set/domain the set
{0, ..., n} for some integer n.) For each b in {“E", “W"}, the value of who_is_on_bank[b] will be
a set of cannibals and/or missionaries — that is, an element of the set Cannibals U Missionaries,
where U is the set union operator. The expression SUBSET S is the set of all subsets of the set
S, and [D — T] is the set of all arrays/functions with index-set/domain D such that f[d] is an
element of T for all d in D.

TLA+ allows you to write a conjunction of formulas as a list of those formulas bulleted by A. A
disjunction of formulas is similarly written with a list bulleted by V .

TypeOK = A bank_of _boat € {"E", “W"}
A who_is_on_bank €
[{"E", “W"} — sUBSET (Cannibals U Missionaries)]

The possible executions of the system are specified by two formulas: an initial-state formula
usually named Init, and a next-state formula usually named Nexzt. The intial-state formula is the
condition that must be true of the initial state of an execution. The next-state formula is the
condition that must be true for all possible steps in an execution.

The initial-state formula Init asserts that the boat and all the cannibals and missionaries are on
the east bank. The formula

[z € D — exp(z)]

represents the array/function F with index-set/domain D such that F[z] equals ezp(z) for all =
in D.
Init = A bank_of-boat = “E”
A who—is—on_bank = [i € {"E", "W"} —
IF ¢ = "E" THEN Cannibals U Missionaries
ELSE {}]

We now define some operators that will be used to define the next-state formula Next.

We first define IsSafe(S) to be the condition for it to be safe for S to be the set of people on
a bank of the river. It is true iff there are either no missionaries in S or the cannibals in do
not outnumber the missionaries in S. The operator C is the subset relation, and N is the set

intersection operator.
A

IsSafe(S) = Vv S C Cannibals
V Cardinality(S N Cannibals) < Cardinality(S N Missionaries)

We define OtherBank so that OtherBank(“E”) equals “W" and OtherBank(“W") equals “E”.
a

OtherBank(b) = 1r b= “E" THEN “W" ELSE "E"

We now define the formula Move(S, b) to describe a step s — ¢ that represents a safe move of a
set S of people from riverbank b to riverbank OtherBank(b) — that is, a step where state ¢ is one
in which the set of people on each bank is safe. Formula Move(S) contains primed and unprimed
variables, where an unprimed variable v equals the value of v in state s and a primed variable v’
equals the variable’s value in state ¢t. The possible step s — ¢ describes a safe move of the people
in S from b to OtherBank(b) if and only if Move(S, b) equals true for that step.

The definition uses the TLA+ LET /IN construct for introducing definitions local to an expres-
sion, where LET defsIN exp is the expression erp in which each identifier defined in defs has its
indicated meaning. In this definition, newThisBank and newOtherBank are defined locally to
equal the sets of people on bank b and on bank

OtherBank(b) after the set S of people take the boat from b to

OtherBank(b). The operator \ is set difference, where T'\ S is the set of all elements in T not
in S.

Observe that the first two conjuncts in the IN expression contain no prime variables. They are
enabling conditions — conditions on state s that allow the step. The second two conjuncts specify
the new values of the two variables (their values in state t) in terms of their old values (their

values in state s).
a

Move(S, b) = A Cardinality(S) € {1, 2}
ALET newThisBank = who_is_on_bank[b]\ S
newOtherBank = who_is_on_bank|OtherBank(b)] U S
IN A IsSafe(newThisBank)

A IsSafe(newOtherBank)

A bank_of _boat’" = OtherBank(b)

A who_is_on_bank’ =

[i € {"E", “W"} — IF ¢ = b THEN newThisBank

ELSE newOtherBank]

The next-state formula Next describes all steps s — ¢ that represent a safe move of a set S of
people across the river starting from bank_of_boat. It asserts that there exists some subset S of
the set of people on the bank where the boat is for which step s — ¢ describes a safe movement of
the people in S to the other bank. This assertion is expressed mathematically with the existential
quantification operator 3 (written by mathematicians as an upside down E), where

Jdz € T: A(z)
asserts that A(z) is true for at least one value z in the set T'.

Next = 3S € SUBSET who_is_on_bank[bank_of _boat] :
Move(S, bank_of _boat)

The usual reason for writing a spec is to check the system you’re specifying for errors. This
means checking that all possible executions satisfy some property. The most commonly checked
property is invariance, asserting that some condition is satisfied by every state in in every possible
execution.

The purpose of this spec is to solve the cannibals and missionaries problem, which means finding
some possible execution in which everyone reaches bank “W". We can find that solution by
having the TLC' model checker check the invariance property that, in every reachable state, there
is someone left on bank “E". When TLC find that an invariant it’s checking isn’t an invariant,
it outputs an execution that reaches a state in which the invariant isn’t true—which in this case
means an execution that solves the problem (one ending in a state with no one on bank “E"). So
to find the solution, you just have to run TLC on a model of this specification in which three-
element sets are substituted for the constants Missionaries and Cannibals, instructing TLC' to
check that the formula

who_is_on_bank["E"] # {}

is an invariant. The error trace TLC produces is a solution to the problem. You can run TLC
from the TLA+ Toolbox. Go to the TLA+ web page to find out how to learn to do that.

This problem was proposed to me by Jay Misra, who then suggested improvements to my first
I version of the spec.

|
\ * Modification History

\ * Last modified Sat Dec 22 14:17:18 PST 2018 by lamport
\ * Created Thu Dec 20 11:44:08 PST 2018 by lamport

