Modeling transitive closure in B/[Event-B

Also discussions about first-order and higher-order aspects of B.

::load
MACHINE StateGraph
SETS States = {sl,s2,s3}
CONSTANTS next
PROPERTIES
next = {sl|->s2, s2|->sl, s3|->s3}
END

Loaded machine: StateGraph

:init

Machine constants were not set up yet. Automatically set up constants using a
rbitrary transition: SETUP_CONSTANTS()
Executed operation: INITIALISATION()

:dot expr as graph next

States

s2 s3 ;;)next

nextnext

sl

How do we obtain the transitive closure of this relation? In classical B there is the operator
closurel for this:

closurel (next)

{(s1+> s1),(s1+> s2),(s2+ s1),(s2 s2),(s3— s3)}

:dot expr as graph ("clsl",closurel(next))

States

s2)clsl s3)clsl

clslicls1

sl Dclsl

In Event-B this operator is not available in the core language; one can import a theory for it
though. Let us, however, try and axiomatise this ourselves:

next € clsl & // the next relation is included in the transitive closure
Vs.(s:States = next[clsl[{s}]] € clsl[{s}]) // all successors are also incli

TRUE
Solution:

o cls1 ={(s2 s1),(s1+— s2),(s3+— 83),(s1+ s1),(s1 > s3),(s2— s2)}

As you can see this solution is maybe not what you expected, it contains an edge between

s1 and s3. But it satisfies our conditions.

:dot expr as graph ("clsl", {(s2»sl),(sl»s2),(s3»s3),(sleksl),(sl»s3),(s2ms2)

States

sl Dclsl

Mﬂ &11

s2 Dclsl s3 Dclsl

As you can see there are eight solutions to this "axiomatisation" of transitive closure for this

graph:

ttable {clsl | next € clsl & Vs.(s:States = next[clsl[{s}]] € clsl[{s}])}

cls1
{(s1»s1),(s1»52),(s1053),(s281),(s2052),(S3ms3)}
{(s1»s1),(s1=52),(s2-81),(s252),(s3ms3)}
{(s1»s1),(s1»52),(s281),(s252),(5283),(s3s3)}
{(s1»s1),(s1»52),(s1053),(s2-81),(s252),(52783),(s3»s3)}
{(s1»s1),(s1»52),(s1053),(s281),(s2052),(s3w81),(s3m52),(s3s3)}
{(s1»s1),(s1»52),(s2081),(s2952),(S3w81),(s3ms2),(s3Ps3)}
{(s1»s1),(s1»52),(s1053),(s2781),(s2052),(52783),(s3Ps1), (s3PS2), (s3ms3)}

{(s1»s1),(s1»s2),(s2ps1),(52ms2),(52H53),(s3ms1),(S3»52),(s3»s3)}
Can we encode transitive closure in B?

What we want is the smallest relation satisfying our axioms. In higher-oder logic we can
quantify over predicates, and for example ask that we want the smallest solution.

Transitive closure can actually not be axiomatised in first-order logic. As B is based on first-
order logic, can we do this without resorting to the built-in operator closurel ? The
answer is yes, because B has higher-order values and we can arbitrarily quantify over sets
and relation values. We have to specify that all other relations contained in cls1 are not a
solution. With this we get a single solution, encoding our expected transitive closure of the
next relation:

:table {clsl |
next C clsl & Vs.(s:States = next[clsl[{s}]] € clsl[{s}])
& // all smaller relations do not satisfy our axioms:
Vother. (other C clsl & next € other =
- (Vs.(s:States = next[other[{s}]] S other[{s}])

)

cls1

{(s1~s1),(s1»s2),(s2ps1),(52ms2),(s3Ps3)}

:dot expr as graph ("clsl", {(sleksl),(slks2),(s2rsl),(s2rs2),(s3»s3)})

States

s2 Dclsl s3 Dclsl

clslicls1

sl Dclsl

/.

Digression: Encoding transitive closure in Prolog

In Prolog we can encode transitive closure as this:

cls1(A,B) :- next(A,B).
cls1(A,B) :- next(A,C), cls1(C,B).

So even though Prolog is built on top of first-order logic, it has a "minimization" built-in: the
semantics of the above Prolog program are not all models satisfying the clauses, but the
minimal Herbrand model, which here encodes exactly the transitive closure.

Note that the Clark completion is an attempt at modelling the semantics of Prolog programs
in first-order logic. The Clark completion translates the implications of the two clauses
above into a single equivalence formula of the form:

V(A,B).(A:States & B:States =

(A»B : clsl

«
(A»B : next
or
dC.(C:States & ArC:next & CrB:clsl)
)

))

TRUE

Solution:

o cls1 ={(s1> s2),(s2— s1),(sl+— s1),(s2+— s2),(s3+— s3)}

As our initial attempt at axiomatising the transitive closure, this encoding admits eightmany
solutions:

:table {clsl]
V(A,B).(A:States & B:States =

(A»B : clsl
(AP»B : next
or
dCc.(C:States & ArC:next & CrB:clsl)
)

))}

cls1
{(s1»s1),(s1»s2),(s2081),(s2952),(S3ms3)}
{(s1»s1),(s1»52),(s281),(S252),(S3w81),(s3ms3)}
{(s1»s1),(s1»52),(s281),(s252),(s3052),(s3s3)}
{(s1»s1),(s1»52),(s1053),(s2-81),(s2052),(52783),(s3Ps3)}
{(s1»s1),(s1»52),(s1053),(s2781),(s252),(52783),(s3Ps1), (s3s3)}
{(s1»s1),(s1»52),(s1053),(s281),(s2052),(52753), (s3Ps2), (S35 3)}
{(s1»s1),(s1»52),(s2081),(s252),(s3w81),(s3ms2),(s3Ps3)}

{(s1»51),(s1»s2),(s153),(s2~51),(5252),(s2~53),(s3+51),(s3PS2), (53PS 3)}

ASCII versions of formulas

:prettyprint next <: clsl & // the next relation is included in the transitis
!s.(s:States => next[clsl[{s}]] <: clsl[{s}]) // all successors are also inc

next C cls1 ANVs- (s € States = next[cls1[{s}]] C cls1[{s}])

:prettyprint V(A,B).(A:States & B:States =

(A|->B : clsl

<=>
(A|->B : next
or
#C.(C:States & A|->C:next & C|->B:clsl)
)

))

V(A, B) - (A € States N\ B € States= (A+ B € clsl) < (A— B€ nextVv 3C- (C €

:prettyprint next € clsl & Vs.(s:States => next[clsl[{s}]] € clsl[{s}]) //
& // all smaller relations do not satisfy our axioms:
Vother. (other <<: clsl & next € other =
not (Vs.(s:States = next[other[{s}]] <: other[{s}

)

next C cls1 ANVs- (s € States = next[cls1[{s}]] C cls1[{s}]) A Vother- (other C cls1,

