[1]:

[2]:

[3]:

[4] :

1 IntroProlog
October 18, 2022

1 Introduction to Prolog

1.0.1 Propositions

Prolog programs consist of clauses. A clause is always terminated by a dot (.). The simplest
clauses are facts. Here we define two propositions to be true:

rains.
no_hat.

% Asserting clauses for user:rains/0

% Asserting clauses for user:no_hat/0

We can now ask the Prolog system whether it rains:
?-rains.

true

More complicated clauses make use of the implication operator :-. They are also called rules.
Logically they stipulate that the left-hand side of the clause must be true if the right-hand side
is true. The right-hand side can contain multiple propositions separated by commas. The comma
can be read as a logical conjunction (and).

carry_umbrella :- rains, no_hat.

% Asserting clauses for user:carry_umbrella/0

?- carry_umbrella.

true

1.0.2 Predicates
Instead of propositions we can also use predicates with arguments within our clauses. The argu-

ments to predicates denote objects for which the predicate is true. Arguments which start with an
upper-case letter are logical variables. Below X is such a variable and it can stand for any object.

[5]: human(sokrates).
human (schopenhauer) .
human (locke) .

tiger (hobbes) .

mortal(X) :- human(X).
mortal(X) :- animal(X).

animal (X) :- tiger(X).

% Asserting clauses for user:human/1

% Asserting clauses for user:tiger/1

% Asserting clauses for user:mortal/1

% Asserting clauses for user:animal/1

You can now ask questions about logical consequences of your logic program. In simple queries you
provide all arguments:

[8]: ?-human(locke).

true

[9]: ?7- human(hobbes).

false

[10]: ?- animal (hobbes).

true

You can also use variables in queries, and Prolog will find values for the variables so that the result
is a logical consequence of you program:

[11]: ?- mortal(X).

X = sokrates

In the standard Prolog console you can type a semicolong (;) to get more answers. Here in Jupyter
we need to use jupyter:retry.

[13]: jupyter:retry

% Retrying goal: mortal (X)

X = schopenhauer

[14]: jupyter:retry

% Retrying goal: mortal (X)

X = locke

[15]: jupyter:retry

% Retrying goal: mortal (X)

X = hobbes

[16]: jupyter:retry

% Retrying goal: mortal(X)

false
Jupyter provides a feature to compute all solutions of a goal and display them in a table:

[28]: jupyter:print_table(mortal (X))

X

sokrates
schopenhauer
locke

hobbes

true

Prolog also has a built-in predicate called findall which can be used to find all solutions in one
go:

[17]: 7?-findall(X,mortal (X),Results).

Results = [sokrates,schopenhauer,locke,hobbes]

[18]:

[19]:

[20] :

[21]:

[22]:

[23]:

[24]:

1.0.3 Prolog lists and using append

The result is a Prolog list. Lists play an important role in Prolog and they can be written us-
ing square brackets. [] denotes the empty list. The built-in predicate append can be used to
concatenate two lists:

7-append([sokrates,locke], [hobbes],R).

R = [sokrates,locke,hobbes]

Lists can contain any kind of object, e.g., numbers but also other lists:

7-append([1,2,sokrates, 3], [4, [sokrates],4],0ut).

OQut = [1,2,sokrates,3,4, [sokrates],4]

One nice feature of logic programming is that the input/output relation is not pre-determined. One
can run predicates backwards, meaning one can use append to deconstruct a list:

7-append(X,Y, [1,2,3]).

X =1,

Y [1,2,3]

jupyter:retry.

% Retrying goal: append(X,Y,[1,2,3])

X

(11,

Y = [2,3]

jupyter:retry.

% Retrying goal: append(X,Y,[1,2,3])

X

(1,21,
(3]

Y

jupyter:retry.

% Retrying goal: append(X,Y,[1,2,3])

X

[1’2,3] 3
(]

Y

jupyter:retry.

% Retrying goal: append(X,Y,[1,2,3])

false

Variables can also appear multiple times in clauses or queries. Here we check if we can split a list
in half:

[26]: ?-append(X,X, [a,b,a,b]).

X = [a,b]

With the underscore we indicate that we are not interested in an argument; it is an anonymous
logical variable. Here we use this to find the last element of a list:

[27]: ?-append(_, [X], [a,b,c,d]).

X=d

1.0.4 Family tree example

We now load a Prolog file describing the family tree of “Game of Thrones”.

[39]: :- consult('prolog files/1_got_family_tree.pl').

It contains facts for four basic predicates male/1, female/1, child/2 and couple/2.

[40]: ?-male(X).

X = Aegon V Targaryen
We an now find the parents of X:

[41]: ?-male(X),child(X,Y).

X

Aegon V Targaryen,

Y = Maekar Targaryen

[42]: jupyter:retry.

% Retrying goal: male(X),child(X,Y)

X

Aegon V Targaryen,

Y = Dyanna Dayne

Let us now define derived predicates for father and mother:

[43]: father(A,B) :- child(B,A),male(A).
mother(A,B) :- child(B,A),female(A).

% Asserting clauses for user:father/2

% Asserting clauses for user:mother/2

[44] : | 7-father (A, 'Sansa Stark').

A = Eddard Stark

We can visualise the father/mother relationships in graphical way in Jupyter:
[45]: parent_relation(A,B, 'father') :- father(A,B).
parent_relation(A,B, 'mother') :- mother(A,B).

Previously defined clauses of user:parent_relation/3 were retracted:
:- dynamic parent_relation/3.

parent_relation(A, B, father) :-
father(A, B).

parent_relation(A, B, mother) :-
mother (A, B).

% Asserting clauses for user:parent_relation/3

[33]: jupyter:print_transition_graph(parent_relation/3, 1, 2, 3).

true
Let us now define the grandfather and grandmother relationships:

[46]: grandfather(A,B) :- child(B,C) , child(C,A), male(A).
grandmother (A,B) :- child(B,C) , child(C,A), female(A).

% Asserting clauses for user:grandfather/2

% Asserting clauses for user:grandmother/2

[47]: 7?-grandfather(GF,'Sansa Stark').

GF = Rickard Stark
Finally let us use recursion in Prolog to define arbitrary ancestors:

[50]: parent(A,B) :- child(B,A).
ancestor(A,B) :- parent(A,B).
ancestor(A,B) :- parent(C,B), ancestor(A,C).

% Asserting clauses for user:parent/2

Previously defined clauses of user:ancestor/2 were retracted:
:- dynamic ancestor/2.

ancestor (A, B) :-
parent (A, B).

ancestor(A, B) :-
parent(C, B),
ancestor(A, C).

% Asserting clauses for user:ancestor/2

[51]: | ?-ancestor (GF, 'Sansa Stark').

GF = Eddard Stark

[62]: jupyter:print_table(ancestor(X, 'Sansa Stark'))

X

Eddard Stark
Catelyn Stark

Rickard Stark
Lyarra Stark

true

1.0.5 Send More Money Puzzle

Prolog is also a natural language to solve constraint satisfaction problems. In particular the
CLP(FD) library is very useful here. It allows to solve constraints over finite domains.

[63]: :- use_module(library(clpfd)).

The library provides a few operators like #=, ins or all_different:

[65]: ?- X #= Y+Z, [Y,Z] ins 0..9.

X in 0..18,
Y in 0..9,
Z in 0..9

To find solutions one needs to call labeling:

[66]: X #= Y+Z, [Y,Z] ins 0..9, labeling([],[Y,Z]).

X=0,
Y=0,
Z=20

[571: X #= Y+Z, [Y,Z] ins 0..9, all_different([X,Y,Z]), labeling([],[Y,Z]).

X =3,
Y=1,
Z=2

Let us now solve the Send More Money puzzle, where we have to find distinct digits such that this

equation holds:

S E N D
+ M 0 R E
= M 0 N E Y

(S,E,N,D,M,0,R,Y],
L ins 0..9, 7 all vartables are digits
S#>0, M#>0, /7 S and M cannot be 1
all_different(L), 7 all variables are different
1000%S + 100*E + 10*N + D

+ 1000*M + 100*0 + 10*%R + E

#= 10000*M + 1000*0 + 100*N + 10*E + Y,
labeling([], L).

ﬁ
()]
=
—_
~
|
-
Il

L = [9,5,6,7,1,0,8,2],
S =29,
E =25,
N =686,
D=7,
M=1,
0=0,
R =8,
Y =2

juptyer:retry

	Introduction to Prolog
	Propositions
	Predicates
	Prolog lists and using append
	Family tree example
	Send More Money Puzzle

