
1_IntroProlog

October 18, 2022

1 Introduction to Prolog

1.0.1 Propositions

Prolog programs consist of clauses. A clause is always terminated by a dot (.). The simplest
clauses are facts. Here we define two propositions to be true:

[1]: rains.
no_hat.

% Asserting clauses for user:rains/0

% Asserting clauses for user:no_hat/0

We can now ask the Prolog system whether it rains:

[2]: ?-rains.

true

More complicated clauses make use of the implication operator :-. They are also called rules.
Logically they stipulate that the left-hand side of the clause must be true if the right-hand side
is true. The right-hand side can contain multiple propositions separated by commas. The comma
can be read as a logical conjunction (and).

[3]: carry_umbrella :- rains, no_hat.

% Asserting clauses for user:carry_umbrella/0

[4]: ?- carry_umbrella.

true

1



1.0.2 Predicates

Instead of propositions we can also use predicates with arguments within our clauses. The argu-
ments to predicates denote objects for which the predicate is true. Arguments which start with an
upper-case letter are logical variables. Below X is such a variable and it can stand for any object.

[5]: human(sokrates).
human(schopenhauer).
human(locke).

tiger(hobbes).

mortal(X) :- human(X).
mortal(X) :- animal(X).

animal(X) :- tiger(X).

% Asserting clauses for user:human/1

% Asserting clauses for user:tiger/1

% Asserting clauses for user:mortal/1

% Asserting clauses for user:animal/1

You can now ask questions about logical consequences of your logic program. In simple queries you
provide all arguments:

[8]: ?-human(locke).

true

[9]: ?- human(hobbes).

false

[10]: ?- animal(hobbes).

true

You can also use variables in queries, and Prolog will find values for the variables so that the result
is a logical consequence of you program:

[11]: ?- mortal(X).

X = sokrates

2



In the standard Prolog console you can type a semicolong (;) to get more answers. Here in Jupyter
we need to use jupyter:retry.

[13]: jupyter:retry

% Retrying goal: mortal(X)

X = schopenhauer

[14]: jupyter:retry

% Retrying goal: mortal(X)

X = locke

[15]: jupyter:retry

% Retrying goal: mortal(X)

X = hobbes

[16]: jupyter:retry

% Retrying goal: mortal(X)

false

Jupyter provides a feature to compute all solutions of a goal and display them in a table:

[28]: jupyter:print_table(mortal(X))

X
sokrates
schopenhauer
locke
hobbes

true

Prolog also has a built-in predicate called findall which can be used to find all solutions in one
go:

[17]: ?-findall(X,mortal(X),Results).

Results = [sokrates,schopenhauer,locke,hobbes]

3



1.0.3 Prolog lists and using append

The result is a Prolog list. Lists play an important role in Prolog and they can be written us-
ing square brackets. [] denotes the empty list. The built-in predicate append can be used to
concatenate two lists:

[18]: ?-append([sokrates,locke],[hobbes],R).

R = [sokrates,locke,hobbes]

Lists can contain any kind of object, e.g., numbers but also other lists:

[19]: ?-append([1,2,sokrates,3],[4,[sokrates],4],Out).

Out = [1,2,sokrates,3,4,[sokrates],4]

One nice feature of logic programming is that the input/output relation is not pre-determined. One
can run predicates backwards, meaning one can use append to deconstruct a list:

[20]: ?-append(X,Y,[1,2,3]).

X = [],

Y = [1,2,3]

[21]: jupyter:retry.

% Retrying goal: append(X,Y,[1,2,3])

X = [1],

Y = [2,3]

[22]: jupyter:retry.

% Retrying goal: append(X,Y,[1,2,3])

X = [1,2],

Y = [3]

[23]: jupyter:retry.

% Retrying goal: append(X,Y,[1,2,3])

X = [1,2,3],

Y = []

[24]: jupyter:retry.

4



% Retrying goal: append(X,Y,[1,2,3])

false

Variables can also appear multiple times in clauses or queries. Here we check if we can split a list
in half:

[26]: ?-append(X,X,[a,b,a,b]).

X = [a,b]

With the underscore we indicate that we are not interested in an argument; it is an anonymous
logical variable. Here we use this to find the last element of a list:

[27]: ?-append(_,[X],[a,b,c,d]).

X = d

1.0.4 Family tree example

We now load a Prolog file describing the family tree of “Game of Thrones”.

[39]: :- consult('prolog_files/1_got_family_tree.pl').

It contains facts for four basic predicates male/1, female/1, child/2 and couple/2.

[40]: ?-male(X).

X = Aegon V Targaryen

We an now find the parents of X:

[41]: ?-male(X),child(X,Y).

X = Aegon V Targaryen,

Y = Maekar Targaryen

[42]: jupyter:retry.

% Retrying goal: male(X),child(X,Y)

X = Aegon V Targaryen,

Y = Dyanna Dayne

Let us now define derived predicates for father and mother:

[43]: father(A,B) :- child(B,A),male(A).
mother(A,B) :- child(B,A),female(A).

5



% Asserting clauses for user:father/2

% Asserting clauses for user:mother/2

[44]: ?-father(A,'Sansa Stark').

A = Eddard Stark

We can visualise the father/mother relationships in graphical way in Jupyter:

[45]: parent_relation(A,B,'father') :- father(A,B).
parent_relation(A,B,'mother') :- mother(A,B).

Previously defined clauses of user:parent_relation/3 were retracted:
:- dynamic parent_relation/3.

parent_relation(A, B, father) :-
father(A, B).

parent_relation(A, B, mother) :-
mother(A, B).

% Asserting clauses for user:parent_relation/3

[33]: jupyter:print_transition_graph(parent_relation/3, 1, 2, 3).

Maekar Targaryen

Aegon V Targaryen

father

Aerion Targaryen

father

Aemon Targaryen

father

Duncan Targaryen

father

Aerys II Targaryen

father

Rhaella Targaryen

father

Daeron Targaryen

father

Rhaegar Targaryen

father

Viserys Targaryen

father

Daenerys Targaryen

father mothermothermother

Rhaenys Targaryen

father

Aegon Targaryen

father

Rhaego

mother

Drogo

father

Rickard Stark

Brandon Stark

father

Eddard Stark

father

Lyanna Stark

father

Benjen Stark

father

Robb Stark

father

Sansa Stark

father

Arya Stark

father

Bran Stark

father

Rickon Stark

father

Jon Snow

father

Dyanna Dayne

mothermothermother

Unknown Targaryen Queen

mothermothermother mother

Elia Martell

mother mother

Lyarra Stark

mothermothermother mother

Unknown_Jon_Mother

mother

Catelyn Stark

mothermother mothermother mother

true

Let us now define the grandfather and grandmother relationships:

[46]: grandfather(A,B) :- child(B,C) , child(C,A), male(A).
grandmother(A,B) :- child(B,C) , child(C,A), female(A).

% Asserting clauses for user:grandfather/2

% Asserting clauses for user:grandmother/2

6



[47]: ?-grandfather(GF,'Sansa Stark').

GF = Rickard Stark

Finally let us use recursion in Prolog to define arbitrary ancestors:

[50]: parent(A,B) :- child(B,A).
ancestor(A,B):- parent(A,B).
ancestor(A,B):- parent(C,B), ancestor(A,C).

% Asserting clauses for user:parent/2

Previously defined clauses of user:ancestor/2 were retracted:
:- dynamic ancestor/2.

ancestor(A, B) :-
parent(A, B).

ancestor(A, B) :-
parent(C, B),
ancestor(A, C).

% Asserting clauses for user:ancestor/2

[51]: ?-ancestor(GF,'Sansa Stark').

GF = Eddard Stark

[52]: jupyter:print_table(ancestor(X,'Sansa Stark'))

X
Eddard Stark
Catelyn Stark
Rickard Stark
Lyarra Stark

true

1.0.5 Send More Money Puzzle

Prolog is also a natural language to solve constraint satisfaction problems. In particular the
CLP(FD) library is very useful here. It allows to solve constraints over finite domains.

[53]: :- use_module(library(clpfd)).

The library provides a few operators like #=, ins or all_different:

7



[55]: ?- X #= Y+Z, [Y,Z] ins 0..9.

X in 0..18,

Y in 0..9,

Z in 0..9

To find solutions one needs to call labeling:

[56]: X #= Y+Z, [Y,Z] ins 0..9, labeling([],[Y,Z]).

X = 0,

Y = 0,

Z = 0

[57]: X #= Y+Z, [Y,Z] ins 0..9, all_different([X,Y,Z]), labeling([],[Y,Z]).

X = 3,

Y = 1,

Z = 2

Let us now solve the Send More Money puzzle, where we have to find distinct digits such that this
equation holds:

S E N D
+ M O R E
= M O N E Y

[61]: ?- L = [S,E,N,D,M,O,R,Y],
L ins 0..9, % all variables are digits
S#>0, M#>0, % S and M cannot be 1
all_different(L), % all variables are different

1000*S + 100*E + 10*N + D
+ 1000*M + 100*O + 10*R + E
#= 10000*M + 1000*O + 100*N + 10*E + Y,

labeling([], L).

8



L = [9,5,6,7,1,0,8,2],

S = 9,

E = 5,

N = 6,

D = 7,

M = 1,

O = 0,

R = 8,

Y = 2

juptyer:retry

9


	Introduction to Prolog
	Propositions
	Predicates
	Prolog lists and using append
	Family tree example
	Send More Money Puzzle



