
2_IntroProlog

October 18, 2022

1 A more systematic introduction to Prolog

1.0.1 Propositions

Prolog programs consist of clauses. A clause is always terminated by a dot (.). Propositions start
with a lower case letter or you can use quotes to use (almost) arbitrary strings as propositions.
The simplest clauses are facts. Here we define three propositions to be true, for the last two we use
quotes:

[47]: rains.
'I am not wearing a hat'.
'The sun is shining'.
beach :- fail.

Previously defined clauses of user:rains/0 were retracted:
:- dynamic rains/0.

rains.

% Asserting clauses for user:rains/0

Previously defined clauses of user:I am not wearing a hat/0 were retracted:
:- dynamic'I am not wearing a hat'/0.

'I am not wearing a hat'.

% Asserting clauses for user:I am not wearing a hat/0

Previously defined clauses of user:The sun is shining/0 were retracted:
:- dynamic'The sun is shining'/0.

'The sun is shining'.

% Asserting clauses for user:The sun is shining/0

1

Previously defined clauses of user:beach/0 were retracted:
:- dynamic beach/0.

beach :-
fail.

% Asserting clauses for user:beach/0

We can now ask the Prolog system whether the sun is shining:

[]: ?- beach.

false

[49]: ?-'The sun is shining'.

true

More complicated clauses make use of the implication operator :-. They are also called rules.
Logically they stipulate that the left-hand side of the clause must be true if the right-hand side
is true. The right-hand side can contain multiple propositions separated by commas. The comma
can be read as a logical conjunction (and).

[50]: carry_umbrella :- rains, 'I am not wearing a hat'.
rainbow :- rains, 'The sun is shining'.

Previously defined clauses of user:carry_umbrella/0 were retracted:
:- dynamic carry_umbrella/0.

carry_umbrella :-
rains,
'I am not wearing a hat'.

% Asserting clauses for user:carry_umbrella/0

Previously defined clauses of user:rainbow/0 were retracted:
:- dynamic rainbow/0.

rainbow :-
rains,
'The sun is shining'.

% Asserting clauses for user:rainbow/0

[51]: ?- rainbow.

2

true

The corresponding logic formula to the rule for rainbow is rainbow ← rains � 'The sun is
shining'

1.0.2 Predicates

Instead of propositions we can also use predicates with arguments within our clauses. The argu-
ments to predicates denote objects for which the predicate is true. Arguments which start with an
upper-case letter are logical variables. Below X is such a variable and it can stand for any object.

Prolog provides a few built-in predicates like > or = or is.

[]: ?- 2>3.

false

[53]: ?- is(X,3+2).

X = 5

Let us now define our own predicates. In this case mother/2 and grandma/2. Note: we often use
the notation p/n to denote the fact that the predicate p takes n arguments. n is called the arity of
p.

[54]: mother(a,b).
mother(b,c).
grandma(a,c) :- mother(a,b),mother(b,c).

Previously defined clauses of user:mother/2 were retracted:
:- dynamic mother/2.

mother(a, b).
mother(b, c).

% Asserting clauses for user:mother/2

Previously defined clauses of user:grandma/2 were retracted:
:- dynamic grandma/2.

grandma(A, B) :-
mother(A, C),
mother(C, B).

% Asserting clauses for user:grandma/2

3

You can now ask questions about logical consequences of your logic program. In simple queries you
provide all arguments:

[55]: ?-grandma(a,c).

true

[56]: ?- grandma(a,c) ; mother(c,d).

true

1.1 Logical variables

Variables start with an upper-case letter or an underscore. Variables are called logical variables
in Prolog: once assigned, their value is immutable and cannot be changed (except upon backtrack-
ing).

[57]: ?- X=1.

X = 1

Above we have set the logical variable X to 1. The scope of the name X is a Prolog clause (i.e., a
fact or rule or a query). Thus, in the query below we talk about another X:

[58]: ?- X=2.

X = 2

However, in the same scope we cannot change the value of X, once assigned:

[]: ?- X=1, X=2.

false

[60]: ?- X=1, X2 is X+1.

X = 1,

X2 = 2

Within a clause variables are implicitly unversally quantified. Let us now define the grandma
predicate in a more general fashion:

[61]: grandma(X,Y) :- mother(X,Z), mother(Z,Y).

Previously defined clauses of user:grandma/2 were retracted:
:- dynamic grandma/2.

grandma(a, c) :-
mother(a, b),

4

mother(b, c).

% Asserting clauses for user:grandma/2

The above clause is equivalent to this logical formula:

� X,Y,Z . grandma(X,Y) ← mother(X,Z)� mother(Z,Y)

Let us query the predicate:

[62]: ?- grandma(a,X).

X = c

When we have variables in a query, Prolog gives us solutions for variables such that the instantiated
predicate calls are logical consequences of your program.

We can find all solutions using the print_table command of our Jupyter kernel:

[63]: jupyter:print_table(grandma(a,X))

X
c

true

Prolog also has a built-in predicate called findall which can be used to find all solutions in one
go:

[64]: ?-findall(X,grandma(a,X),Results).

Results = [c]

1.1.1 Prolog terms and substitutions

Terms represent data values (aka objects). We have that - constants like a and b are terms -
variables like X are terms - terms can also be constructed using function symbols

A predicate call takes terms as arguments. E.g. for grandma(a,X) we have the term a as first
argument and the term X as second argument.

1.2 Exercise

Let us try exercise 2.1.1 (iii) from the Art of Prolog (https://mitpress.mit.edu/9780262691635/the-
art-of-prolog/), describing the layout of Figure 2.3 using left_of/2 and above/2.

[65]: left_of(bicycle,camera).
left_of(pencil,hourglass).

5

left_of(hourglass,butterfly).
left_of(butterfly,fish).

above(bicycle,pencil).
above(camera,butterfly).

Previously defined clauses of user:left_of/2 were retracted:
:- dynamic left_of/2.

left_of(bicycle, camera).
left_of(pencil, hourglass).
left_of(hourglass, butterfly).
left_of(butterfly, fish).

% Asserting clauses for user:left_of/2

Previously defined clauses of user:above/2 were retracted:
:- dynamic above/2.

above(bicycle, pencil).
above(camera, butterfly).

% Asserting clauses for user:above/2

We can use the Jupyter notebook to render the graph. The print_transition_graph predicate
requires a ternary predicate, so that we can provide the edge labels:

[66]: edge(A,above,B) :- above(A,B).
edge(A,left_of,B) :- left_of(A,B).

Previously defined clauses of user:edge/3 were retracted:
:- dynamic edge/3.

edge(A, above, B) :-
above(A, B).

edge(A, left_of, B) :-
left_of(A, B).

% Asserting clauses for user:edge/3

[67]: ?- edge(A,B,C).

6

A = bicycle,

B = above,

C = pencil

[68]: jupyter:print_transition_graph(edge/3, 1, 3, 2).

bicycle

pencil

above

camera

left_of

hourglass

left_of

butterfly

above

fish

left_of

left_of

true

We now define the predicates right_of and below in terms of the existing predicates:

[69]: right_of(X,Y) :- left_of(Y,X).
below(X,Y) :- above(Y,X).

Previously defined clauses of user:right_of/2 were retracted:

7

:- dynamic right_of/2.

right_of(A, B) :-
left_of(B, A).

% Asserting clauses for user:right_of/2

Previously defined clauses of user:below/2 were retracted:
:- dynamic below/2.

below(A, B) :-
above(B, A).

% Asserting clauses for user:below/2

[70]: jupyter:print_table(right_of(X,Y))

X Y
camera bicycle
hourglass pencil
butterfly hourglass
fish butterfly

true

[71]: % next(A,B) :- above(A,B); below(A,B) ; left_of(A,B) ; right_of(A,B).
next(A,B) :- edge(A,_,B).
next(A,B) :- edge(B,_,A).

Previously defined clauses of user:next/2 were retracted:
:- dynamic next/2.

next(A, B) :-
edge(A, _, B).

next(A, B) :-
edge(B, _, A).

% Asserting clauses for user:next/2

[72]: jupyter:print_table(next(X,Y))

X Y
bicycle pencil

8

X Y
camera butterfly
bicycle camera
pencil hourglass
hourglass butterfly
butterfly fish
pencil bicycle
butterfly camera
camera bicycle
hourglass pencil
butterfly hourglass
fish butterfly

true

1.3 Recursion

Recursion is also allowed in Prolog rules. We now define the simple graph of Figure 2.4 of the Art
of Prolog as Prolog facts.

Note that Prolog allows the same predicate name to be used with multiple arities. Above we have
defined edge/3, below we define edge/2. For Prolog these two predicates are different and there
is no confusion within the Prolog system. However, for programmers it can be a bit tricky to read
code which uses the same predicate name with multiple arities.

[73]: edge(a,b). edge(a,c).
edge(b,d). edge(c,d).
edge(d,e).
edge(f,g).

Previously defined clauses of user:edge/2 were retracted:
:- dynamic edge/2.

edge(a, b).
edge(a, c).
edge(b, d).
edge(c, d).
edge(d, e).
edge(f, g).

% Asserting clauses for user:edge/2

With the underscore we indicate that we are not interested in an argument; it is an anonymous
logical variable. Here we use this to find the last element of a list:

[74]: jupyter:print_transition_graph(edge/2, 1, 2,0).

9

a

b c

d

e

f

g

true

[75]: conn(A,A) :- true.
%conn(X,Y) :- edge(X,Y).
conn(X,Y) :- edge(X,Z), conn(Z,Y).

Previously defined clauses of user:conn/2 were retracted:
:- dynamic conn/2.

conn(A, A).
conn(A, B) :-

edge(A, C),
conn(C, B).

% Asserting clauses for user:conn/2

[76]: ?- jupyter:print_table(conn(a,X)).

X
a
b
d
e

10

X
c
d
e

true

[77]: ?- findall(X, conn(a,X),Ls), length(Ls,Len).

Ls = [a,b,d,e,c,d,e],

Len = 7

Let us now try and define the transitive and reflexive closure of edge.

[78]: connected(N,N).
connected(N1,N2) :- edge(N1,Link), connected(Link,N2).

Previously defined clauses of user:connected/2 were retracted:
:- dynamic connected/2.

connected(A, A).
connected(A, B) :-

edge(A, C),
connected(C, B).

% Asserting clauses for user:connected/2

[79]: ?- connected(a,X).

X = a

[80]: jupyter:print_transition_graph(connected/2, 1, 2,0).

11

_20642 a

b

d

e

c

f

g

true

How should we adapt the definition to only provide the transitive (non-reflexive) closure?

[81]: conn1(X,Y) :- edge(X,Y).
conn1(N1,N2) :- edge(N1,Link), conn1(Link,N2).

Previously defined clauses of user:conn1/2 were retracted:
:- dynamic conn1/2.

conn1(A, B) :-
edge(A, B).

conn1(A, B) :-
edge(A, C),
conn1(C, B).

% Asserting clauses for user:conn1/2

[82]: ?- conn1(a,X).

X = b

[83]: jupyter:print_transition_graph(conn1/2, 1, 2,0).

12

a

b c

d

e

f

g

true

1.4 Arithmetic

Prolog provides integers and floating point numbers as primitive data structures. With the is
predicate we can for example compute with those numbers:

[84]: ?- X is 2^200.

X = 1606938044258990275541962092341162602522202993782792835301376

[85]: ?- X is 1.0+1.

X = 2.0

2 Compound data values

So far we have seen these primitive Prolog data values: - constants (called atoms in Prolog) like a
and b - integers - floats

More complex data values can be wrapped in so-called functors (also called function symbols). Like
predicates they have an arity and take terms as arguments. Unlike predicates, they denote a value
and not a logical truth value.

13

This can be confusing to beginners: whether something is a predicate or functor depends on the
position in the Prolog file: - top-level symbols in Prolog clauses are predicates - arguments to
predicates and functors only contain functors

Functors have many uses in Prolog. The can be used for simple records up to recursive data
structures like lists or trees.

Below we first use the functor employe/2 as a simple record.

[86]: construct(Name,Department,employe(Name,Department)).

get_name(employe(Name,_),Name).
get_dept(employe(_,Dept),Dept).

Previously defined clauses of user:construct/3 were retracted:
:- dynamic construct/3.

construct(A, B, employe(A, B)).

% Asserting clauses for user:construct/3

Previously defined clauses of user:get_name/2 were retracted:
:- dynamic get_name/2.

get_name(employe(A, _), A).

% Asserting clauses for user:get_name/2

Previously defined clauses of user:get_dept/2 were retracted:
:- dynamic get_dept/2.

get_dept(employe(_, A), A).

% Asserting clauses for user:get_dept/2

[87]: ?- construct(a,cs,E1), construct(b,cs,E2), get_name(E1,N1), get_dept(E2,D2).

E1 = employe(a,cs),

E2 = employe(b,cs),

N1 = a,

D2 = cs

The arguments to a functor can in term also make use of a functor.

14

One could thus for example represent a list in Prolog by using a functor cons/2 to denote a non-
empty list and nil/0 to denote an empty list. Note that a functor of arity 0 is simply a constant
(aka atom in Prolog). So a list of length two with a and b as elements is represented as follows:

[88]: ?- Mylist = cons(a,cons(b,nil)).

Mylist = cons(a,cons(b,nil))

Let us now try and define some useful predicates for our data type: - is_empty/1 to check if
something is the empty list - is_list/1 to check if something is a list - head/1 to get the first
element of a list - element_of/2 to check if something is an element of a list - last/1 to get the last
elemetn of a list

[89]: is_empty(nil) :- true.

Previously defined clauses of user:is_empty/1 were retracted:
:- dynamic is_empty/1.

is_empty(nil).

% Asserting clauses for user:is_empty/1

This should succeed:

[90]: ?- is_empty(nil).

true

[]: ?- is_empty(cons(a,nil)).

false

Let us now define is_list0 (is_list is predefined):

[92]: is_list0(nil).
is_list0(cons(_,B)) :- is_list0(B).

is_non_empty_list(cons(_,B)) :- is_list0(B).

% Asserting clauses for user:is_list0/1

% Asserting clauses for user:is_non_empty_list/1

[93]: ?-is_list0(cons(employe(a,cs),cons(b,nil))).

true

[94]: head(First,cons(First,_)) :- true.

15

% Asserting clauses for user:head/2

[95]: ?- head(X,cons(employe(a,b),cons(b,nil))).

X = employe(a,b)

[96]: element_of(First,cons(First,_)).
element_of(H,cons(_,T)) :- element_of(H,T).

% Asserting clauses for user:element_of/2

[97]: ?- element_of(c,cons(a,cons(b,Y))).

Y = cons(c,_18628)

[98]: jupyter:retry.

% Retrying goal: element_of(c,cons(a,cons(b,Y)))

Y = cons(_18626,cons(c,_18634))

[99]: ?- element_of(First,cons(a,nil))

First = a

[100]: jupyter:print_table(element_of(X,cons(a,cons(b,nil))))

X
a
b

true

[101]: last0(X,cons(X,nil)).
last0(X,cons(_,Y)) :- last0(X,Y).

% Asserting clauses for user:last0/2

[102]: ?- last0(X,cons(a,cons(b,nil))).

X = b

16

2.1 Trees

As a quick example let us represent binary trees using compound Prolog terms. For this we use a
ternary functor tree/3. It has three arguments: - the left sub-tree - the information at the root of
the tree - the right sub-tree We also need the empty tree, which we represent by nil.

[103]: ?- Mytree = tree(tree(nil,a,nil), b, tree(nil,c,tree(nil,d,nil))).

Mytree = tree(tree(nil,a,nil),b,tree(nil,c,tree(nil,d,nil)))

[104]: revtree(nil,nil).
revtree(tree(L,Info,R),tree(RR,Info,RL)) :- revtree(L,RL), revtree(R,RR).

% Asserting clauses for user:revtree/2

[105]: ?- Mytree = tree(tree(nil,a,nil), b, tree(nil,c,tree(nil,d,nil))),
revtree(Mytree,Result).

Mytree = tree(tree(nil,a,nil),b,tree(nil,c,tree(nil,d,nil))),

Result = tree(tree(tree(nil,d,nil),c,nil),b,tree(nil,a,nil))

2.2 Optional Appendix: Visualising data values as trees

Below we try to use the Jupyter graph visualisation to represent data values in a tree-like fashion.

[106]: :- use_module(library(lists)).

We define a subtree relation, using the =.. built-in predicate, which deconstructs a term by gener-
ating a list consisting of the function symbol and all its arguments:

[107]: ?- tree(nil,a,nil) =.. List.

List = [tree,nil,a,nil]

We can now define a subtree relation:

[116]: subtree(Term,Nr,SubTerm) :- Term =.. [_|List], nth1(Nr,List,SubTerm).

% The Prolog server was restarted

% Asserting clauses for user:subtree/3

[117]: ?- Mytree = tree(tree(nil,a,nil), b, tree(nil,c,tree(nil,d,nil))),
subtree(Mytree,Nr,SubTerm).

17

Mytree = tree(tree(nil,a,nil),b,tree(nil,c,tree(nil,d,nil))),

Nr = 1,

SubTerm = tree(nil,a,nil)

For the Jupyter graph visualisation we also need to restrict this relation and define a set of terms
of interest. Indeed, otherwise there are infinitely many terms.

For this we define the transitive and reflexive closure of the subtree relation and
only consider subtrees of a given starting term (here tree(tree(nil,a,nil), b,
tree(nil,c,tree(nil,d,nil)))).

[118]: rec_subtree(Term,Sub) :- Term = Sub.
rec_subtree(Term,Sub) :- subtree(Term,_,X), rec_subtree(X,Sub).

of_interest(Term) :- rec_subtree(tree(tree(nil,a,nil), b,␣
↪→tree(nil,c,tree(nil,d,nil))),Term).

subt(Term,Nr,SubTerm) :-
of_interest(Term), % only consider subterms of the above term as nodes
subtree(Term,Nr,SubTerm).

% Asserting clauses for user:rec_subtree/2

% Asserting clauses for user:of_interest/1

% Asserting clauses for user:subt/3

[119]: ?- Mytree = tree(tree(nil,a,nil), b, tree(nil,c,tree(nil,d,nil))),
subtree(Mytree,Nr,SubTerm).

Mytree = tree(tree(nil,a,nil),b,tree(nil,c,tree(nil,d,nil))),

Nr = 1,

SubTerm = tree(nil,a,nil)

[120]: jupyter:print_transition_graph(subt/3, 1, 3,2).

18

tree(tree(nil,a,nil),b,tree(nil,c,tree(nil,d,nil)))

tree(nil,a,nil)

1 b

2

tree(nil,c,tree(nil,d,nil))

3

nil

1 3

a

2

1 c

2

tree(nil,d,nil)

3

1 3

d

2

true

[]:

19

	A more systematic introduction to Prolog
	Propositions
	Predicates

	Logical variables
	Prolog terms and substitutions

	Exercise
	Recursion
	Arithmetic

	Compound data values
	Trees
	Optional Appendix: Visualising data values as trees

