diff --git a/convlab2/dst/trade/crosswoz/utils/logger.py b/convlab2/dst/trade/crosswoz/utils/logger.py deleted file mode 100755 index d872817ec2465ade5c78b0bd94b29acdb12c6143..0000000000000000000000000000000000000000 --- a/convlab2/dst/trade/crosswoz/utils/logger.py +++ /dev/null @@ -1,71 +0,0 @@ -# Code referenced from https://gist.github.com/gyglim/1f8dfb1b5c82627ae3efcfbbadb9f514 -import tensorflow as tf -import numpy as np -import scipy.misc -try: - from StringIO import StringIO # Python 2.7 -except ImportError: - from io import BytesIO # Python 3.x - - -class Logger(object): - - def __init__(self, log_dir): - """Create a summary writer logging to log_dir.""" - self.writer = tf.summary.FileWriter(log_dir) - - def scalar_summary(self, tag, value, step): - """Log a scalar variable.""" - summary = tf.Summary(value=[tf.Summary.Value(tag=tag, simple_value=value)]) - self.writer.add_summary(summary, step) - - def image_summary(self, tag, images, step): - """Log a list of images.""" - - img_summaries = [] - for i, img in enumerate(images): - # Write the image to a string - try: - s = StringIO() - except: - s = BytesIO() - scipy.misc.toimage(img).save(s, format="png") - - # Create an Image object - img_sum = tf.Summary.Image(encoded_image_string=s.getvalue(), - height=img.shape[0], - width=img.shape[1]) - # Create a Summary value - img_summaries.append(tf.Summary.Value(tag='%s/%d' % (tag, i), image=img_sum)) - - # Create and write Summary - summary = tf.Summary(value=img_summaries) - self.writer.add_summary(summary, step) - - def histo_summary(self, tag, values, step, bins=1000): - """Log a histogram of the tensor of values.""" - - # Create a histogram using numpy - counts, bin_edges = np.histogram(values, bins=bins) - - # Fill the fields of the histogram proto - hist = tf.HistogramProto() - hist.min = float(np.min(values)) - hist.max = float(np.max(values)) - hist.num = int(np.prod(values.shape)) - hist.sum = float(np.sum(values)) - hist.sum_squares = float(np.sum(values**2)) - - # Drop the start of the first bin - bin_edges = bin_edges[1:] - - # Add bin edges and counts - for edge in bin_edges: - hist.bucket_limit.append(edge) - for c in counts: - hist.bucket.append(c) - - # Create and write Summary - summary = tf.Summary(value=[tf.Summary.Value(tag=tag, histo=hist)]) - self.writer.add_summary(summary, step) - self.writer.flush() \ No newline at end of file diff --git a/convlab2/dst/trade/multiwoz/utils/logger.py b/convlab2/dst/trade/multiwoz/utils/logger.py deleted file mode 100755 index d872817ec2465ade5c78b0bd94b29acdb12c6143..0000000000000000000000000000000000000000 --- a/convlab2/dst/trade/multiwoz/utils/logger.py +++ /dev/null @@ -1,71 +0,0 @@ -# Code referenced from https://gist.github.com/gyglim/1f8dfb1b5c82627ae3efcfbbadb9f514 -import tensorflow as tf -import numpy as np -import scipy.misc -try: - from StringIO import StringIO # Python 2.7 -except ImportError: - from io import BytesIO # Python 3.x - - -class Logger(object): - - def __init__(self, log_dir): - """Create a summary writer logging to log_dir.""" - self.writer = tf.summary.FileWriter(log_dir) - - def scalar_summary(self, tag, value, step): - """Log a scalar variable.""" - summary = tf.Summary(value=[tf.Summary.Value(tag=tag, simple_value=value)]) - self.writer.add_summary(summary, step) - - def image_summary(self, tag, images, step): - """Log a list of images.""" - - img_summaries = [] - for i, img in enumerate(images): - # Write the image to a string - try: - s = StringIO() - except: - s = BytesIO() - scipy.misc.toimage(img).save(s, format="png") - - # Create an Image object - img_sum = tf.Summary.Image(encoded_image_string=s.getvalue(), - height=img.shape[0], - width=img.shape[1]) - # Create a Summary value - img_summaries.append(tf.Summary.Value(tag='%s/%d' % (tag, i), image=img_sum)) - - # Create and write Summary - summary = tf.Summary(value=img_summaries) - self.writer.add_summary(summary, step) - - def histo_summary(self, tag, values, step, bins=1000): - """Log a histogram of the tensor of values.""" - - # Create a histogram using numpy - counts, bin_edges = np.histogram(values, bins=bins) - - # Fill the fields of the histogram proto - hist = tf.HistogramProto() - hist.min = float(np.min(values)) - hist.max = float(np.max(values)) - hist.num = int(np.prod(values.shape)) - hist.sum = float(np.sum(values)) - hist.sum_squares = float(np.sum(values**2)) - - # Drop the start of the first bin - bin_edges = bin_edges[1:] - - # Add bin edges and counts - for edge in bin_edges: - hist.bucket_limit.append(edge) - for c in counts: - hist.bucket.append(c) - - # Create and write Summary - summary = tf.Summary(value=[tf.Summary.Value(tag=tag, histo=hist)]) - self.writer.add_summary(summary, step) - self.writer.flush() \ No newline at end of file