# coding=utf-8 # # Copyright 2020 Heinrich Heine University Duesseldorf # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from torch.utils.data import Dataset class TensorListDataset(Dataset): r"""Dataset wrapping tensors, tensor dicts and tensor lists. Arguments: *data (Tensor or dict or list of Tensors): tensors that have the same size of the first dimension. """ def __init__(self, *data): if isinstance(data[0], dict): size = list(data[0].values())[0].size(0) elif isinstance(data[0], list): size = data[0][0].size(0) else: size = data[0].size(0) for element in data: if isinstance(element, dict): assert all(size == tensor.size(0) for name, tensor in element.items()) # dict of tensors elif isinstance(element, list): assert all(size == tensor.size(0) for tensor in element) # list of tensors else: assert size == element.size(0) # tensor self.size = size self.data = data def __getitem__(self, index): result = [] for element in self.data: if isinstance(element, dict): result.append({k: v[index] for k, v in element.items()}) elif isinstance(element, list): result.append(v[index] for v in element) else: result.append(element[index]) return tuple(result) def __len__(self): return self.size