# coding=utf-8 # # Copyright 2020 Heinrich Heine University Duesseldorf # # Part of this code is based on the source code of BERT-DST # (arXiv:1907.03040) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import re from utils_dst import (DSTExample, convert_to_unicode) # Required for mapping slot names in dialogue_acts.json file # to proper designations. ACTS_DICT = {'taxi-depart': 'taxi-departure', 'taxi-dest': 'taxi-destination', 'taxi-leave': 'taxi-leaveAt', 'taxi-arrive': 'taxi-arriveBy', 'train-depart': 'train-departure', 'train-dest': 'train-destination', 'train-leave': 'train-leaveAt', 'train-arrive': 'train-arriveBy', 'train-people': 'train-book_people', 'restaurant-price': 'restaurant-pricerange', 'restaurant-people': 'restaurant-book_people', 'restaurant-day': 'restaurant-book_day', 'restaurant-time': 'restaurant-book_time', 'hotel-price': 'hotel-pricerange', 'hotel-people': 'hotel-book_people', 'hotel-day': 'hotel-book_day', 'hotel-stay': 'hotel-book_stay', 'booking-people': 'booking-book_people', 'booking-day': 'booking-book_day', 'booking-stay': 'booking-book_stay', 'booking-time': 'booking-book_time', } LABEL_MAPS = {} # Loaded from file # Loads the dialogue_acts.json and returns a list # of slot-value pairs. def load_acts(input_file): with open(input_file) as f: acts = json.load(f) s_dict = {} for d in acts: for t in acts[d]: # Only process, if turn has annotation if isinstance(acts[d][t], dict): for a in acts[d][t]: aa = a.lower().split('-') if aa[1] == 'inform' or aa[1] == 'recommend' or aa[1] == 'select' or aa[1] == 'book': for i in acts[d][t][a]: s = i[0].lower() v = i[1].lower().strip() if s == 'none' or v == '?' or v == 'none': continue slot = aa[0] + '-' + s if slot in ACTS_DICT: slot = ACTS_DICT[slot] key = d + '.json', t, slot # In case of multiple mentioned values... # ... Option 1: Keep first informed value if key not in s_dict: s_dict[key] = list([v]) # ... Option 2: Keep last informed value #s_dict[key] = list([v]) return s_dict def normalize_time(text): text = re.sub("(\d{1})(a\.?m\.?|p\.?m\.?)", r"\1 \2", text) # am/pm without space text = re.sub("(^| )(\d{1,2}) (a\.?m\.?|p\.?m\.?)", r"\1\2:00 \3", text) # am/pm short to long form text = re.sub("(^| )(at|from|by|until|after) ?(\d{1,2}) ?(\d{2})([^0-9]|$)", r"\1\2 \3:\4\5", text) # Missing separator text = re.sub("(^| )(\d{2})[;.,](\d{2})", r"\1\2:\3", text) # Wrong separator text = re.sub("(^| )(at|from|by|until|after) ?(\d{1,2})([;., ]|$)", r"\1\2 \3:00\4", text) # normalize simple full hour time text = re.sub("(^| )(\d{1}:\d{2})", r"\g<1>0\2", text) # Add missing leading 0 # Map 12 hour times to 24 hour times text = re.sub("(\d{2})(:\d{2}) ?p\.?m\.?", lambda x: str(int(x.groups()[0]) + 12 if int(x.groups()[0]) < 12 else int(x.groups()[0])) + x.groups()[1], text) text = re.sub("(^| )24:(\d{2})", r"\g<1>00:\2", text) # Correct times that use 24 as hour return text def normalize_text(text): text = normalize_time(text) text = re.sub("n't", " not", text) text = re.sub("(^| )zero(-| )star([s.,? ]|$)", r"\g<1>0 star\3", text) text = re.sub("(^| )one(-| )star([s.,? ]|$)", r"\g<1>1 star\3", text) text = re.sub("(^| )two(-| )star([s.,? ]|$)", r"\g<1>2 star\3", text) text = re.sub("(^| )three(-| )star([s.,? ]|$)", r"\g<1>3 star\3", text) text = re.sub("(^| )four(-| )star([s.,? ]|$)", r"\g<1>4 star\3", text) text = re.sub("(^| )five(-| )star([s.,? ]|$)", r"\g<1>5 star\3", text) text = re.sub("archaelogy", "archaeology", text) # Systematic typo text = re.sub("guesthouse", "guest house", text) # Normalization text = re.sub("(^| )b ?& ?b([.,? ]|$)", r"\1bed and breakfast\2", text) # Normalization text = re.sub("bed & breakfast", "bed and breakfast", text) # Normalization return text # This should only contain label normalizations. All other mappings should # be defined in LABEL_MAPS. def normalize_label(slot, value_label): # Normalization of empty slots if value_label == '' or value_label == "not mentioned": return "none" # Normalization of time slots if "leaveAt" in slot or "arriveBy" in slot or slot == 'restaurant-book_time': return normalize_time(value_label) # Normalization if "type" in slot or "name" in slot or "destination" in slot or "departure" in slot: value_label = re.sub("guesthouse", "guest house", value_label) # Map to boolean slots if slot == 'hotel-parking' or slot == 'hotel-internet': if value_label == 'yes' or value_label == 'free': return "true" if value_label == "no": return "false" if slot == 'hotel-type': if value_label == "hotel": return "true" if value_label == "guest house": return "false" return value_label def get_token_pos(tok_list, value_label): find_pos = [] found = False label_list = [item for item in map(str.strip, re.split("(\W+)", value_label)) if len(item) > 0] len_label = len(label_list) for i in range(len(tok_list) + 1 - len_label): if tok_list[i:i + len_label] == label_list: find_pos.append((i, i + len_label)) # start, exclusive_end found = True return found, find_pos def check_label_existence(value_label, usr_utt_tok): in_usr, usr_pos = get_token_pos(usr_utt_tok, value_label) # If no hit even though there should be one, check for value label variants if not in_usr and value_label in LABEL_MAPS: for value_label_variant in LABEL_MAPS[value_label]: in_usr, usr_pos = get_token_pos(usr_utt_tok, value_label_variant) if in_usr: break return in_usr, usr_pos def check_slot_referral(value_label, slot, seen_slots): referred_slot = 'none' if slot == 'hotel-stars' or slot == 'hotel-internet' or slot == 'hotel-parking': return referred_slot for s in seen_slots: # Avoid matches for slots that share values with different meaning. # hotel-internet and -parking are handled separately as Boolean slots. if s == 'hotel-stars' or s == 'hotel-internet' or s == 'hotel-parking': continue if re.match("(hotel|restaurant)-book_people", s) and slot == 'hotel-book_stay': continue if re.match("(hotel|restaurant)-book_people", slot) and s == 'hotel-book_stay': continue if slot != s and (slot not in seen_slots or seen_slots[slot] != value_label): if seen_slots[s] == value_label: referred_slot = s break elif value_label in LABEL_MAPS: for value_label_variant in LABEL_MAPS[value_label]: if seen_slots[s] == value_label_variant: referred_slot = s break return referred_slot def is_in_list(tok, value): found = False tok_list = [item for item in map(str.strip, re.split("(\W+)", tok)) if len(item) > 0] value_list = [item for item in map(str.strip, re.split("(\W+)", value)) if len(item) > 0] tok_len = len(tok_list) value_len = len(value_list) for i in range(tok_len + 1 - value_len): if tok_list[i:i + value_len] == value_list: found = True break return found def delex_utt(utt, values): utt_norm = tokenize(utt) for s, vals in values.items(): for v in vals: if v != 'none': v_norm = tokenize(v) v_len = len(v_norm) for i in range(len(utt_norm) + 1 - v_len): if utt_norm[i:i + v_len] == v_norm: utt_norm[i:i + v_len] = ['[UNK]'] * v_len return utt_norm # Fuzzy matching to label informed slot values def check_slot_inform(value_label, inform_label): result = False informed_value = 'none' vl = ' '.join(tokenize(value_label)) for il in inform_label: if vl == il: result = True elif is_in_list(il, vl): result = True elif is_in_list(vl, il): result = True elif il in LABEL_MAPS: for il_variant in LABEL_MAPS[il]: if vl == il_variant: result = True break elif is_in_list(il_variant, vl): result = True break elif is_in_list(vl, il_variant): result = True break elif vl in LABEL_MAPS: for value_label_variant in LABEL_MAPS[vl]: if value_label_variant == il: result = True break elif is_in_list(il, value_label_variant): result = True break elif is_in_list(value_label_variant, il): result = True break if result: informed_value = il break return result, informed_value def get_turn_label(value_label, inform_label, sys_utt_tok, usr_utt_tok, slot, seen_slots, slot_last_occurrence): usr_utt_tok_label = [0 for _ in usr_utt_tok] informed_value = 'none' referred_slot = 'none' if value_label == 'none' or value_label == 'dontcare' or value_label == 'true' or value_label == 'false': class_type = value_label else: in_usr, usr_pos = check_label_existence(value_label, usr_utt_tok) if in_usr: class_type = 'copy_value' if slot_last_occurrence: (s, e) = usr_pos[-1] for i in range(s, e): usr_utt_tok_label[i] = 1 else: for (s, e) in usr_pos: for i in range(s, e): usr_utt_tok_label[i] = 1 else: is_informed, informed_value = check_slot_inform(value_label, inform_label) if is_informed: class_type = 'inform' else: referred_slot = check_slot_referral(value_label, slot, seen_slots) if referred_slot != 'none': class_type = 'refer' else: class_type = 'unpointable' return informed_value, referred_slot, usr_utt_tok_label, class_type def tokenize(utt): utt_lower = convert_to_unicode(utt).lower() utt_lower = normalize_text(utt_lower) utt_tok = [tok for tok in map(str.strip, re.split("(\W+)", utt_lower)) if len(tok) > 0] return utt_tok def create_examples(input_file, acts_file, set_type, slot_list, label_maps={}, append_history=False, use_history_labels=False, swap_utterances=False, label_value_repetitions=False, delexicalize_sys_utts=False, analyze=False): """Read a DST json file into a list of DSTExample.""" sys_inform_dict = load_acts(acts_file) with open(input_file, "r", encoding='utf-8') as reader: input_data = json.load(reader) global LABEL_MAPS LABEL_MAPS = label_maps examples = [] for dialog_id in input_data: entry = input_data[dialog_id] utterances = entry['log'] # Collects all slot changes throughout the dialog cumulative_labels = {slot: 'none' for slot in slot_list} # First system utterance is empty, since multiwoz starts with user input utt_tok_list = [[]] mod_slots_list = [{}] # Collect all utterances and their metadata usr_sys_switch = True turn_itr = 0 for utt in utterances: # Assert that system and user utterances alternate is_sys_utt = utt['metadata'] != {} if usr_sys_switch == is_sys_utt: print("WARN: Wrong order of system and user utterances. Skipping rest of dialog %s" % (dialog_id)) break usr_sys_switch = is_sys_utt if is_sys_utt: turn_itr += 1 # Delexicalize sys utterance if delexicalize_sys_utts and is_sys_utt: inform_dict = {slot: 'none' for slot in slot_list} for slot in slot_list: if (str(dialog_id), str(turn_itr), slot) in sys_inform_dict: inform_dict[slot] = sys_inform_dict[(str(dialog_id), str(turn_itr), slot)] utt_tok_list.append(delex_utt(utt['text'], inform_dict)) # normalize utterances else: utt_tok_list.append(tokenize(utt['text'])) # normalize utterances modified_slots = {} # If sys utt, extract metadata (identify and collect modified slots) if is_sys_utt: for d in utt['metadata']: booked = utt['metadata'][d]['book']['booked'] booked_slots = {} # Check the booked section if booked != []: for s in booked[0]: booked_slots[s] = normalize_label('%s-%s' % (d, s), booked[0][s]) # normalize labels # Check the semi and the inform slots for category in ['book', 'semi']: for s in utt['metadata'][d][category]: cs = '%s-book_%s' % (d, s) if category == 'book' else '%s-%s' % (d, s) value_label = normalize_label(cs, utt['metadata'][d][category][s]) # normalize labels # Prefer the slot value as stored in the booked section if s in booked_slots: value_label = booked_slots[s] # Remember modified slots and entire dialog state if cs in slot_list and cumulative_labels[cs] != value_label: modified_slots[cs] = value_label cumulative_labels[cs] = value_label mod_slots_list.append(modified_slots.copy()) # Form proper (usr, sys) turns turn_itr = 0 diag_seen_slots_dict = {} diag_seen_slots_value_dict = {slot: 'none' for slot in slot_list} diag_state = {slot: 'none' for slot in slot_list} sys_utt_tok = [] usr_utt_tok = [] hst_utt_tok = [] hst_utt_tok_label_dict = {slot: [] for slot in slot_list} for i in range(1, len(utt_tok_list) - 1, 2): sys_utt_tok_label_dict = {} usr_utt_tok_label_dict = {} value_dict = {} inform_dict = {} inform_slot_dict = {} referral_dict = {} class_type_dict = {} # Collect turn data if append_history: if swap_utterances: hst_utt_tok = usr_utt_tok + sys_utt_tok + hst_utt_tok else: hst_utt_tok = sys_utt_tok + usr_utt_tok + hst_utt_tok sys_utt_tok = utt_tok_list[i - 1] usr_utt_tok = utt_tok_list[i] turn_slots = mod_slots_list[i + 1] guid = '%s-%s-%s' % (set_type, str(dialog_id), str(turn_itr)) if analyze: print("%15s %2s %s ||| %s" % (dialog_id, turn_itr, ' '.join(sys_utt_tok), ' '.join(usr_utt_tok))) print("%15s %2s [" % (dialog_id, turn_itr), end='') new_hst_utt_tok_label_dict = hst_utt_tok_label_dict.copy() new_diag_state = diag_state.copy() for slot in slot_list: value_label = 'none' if slot in turn_slots: value_label = turn_slots[slot] # We keep the original labels so as to not # overlook unpointable values, as well as to not # modify any of the original labels for test sets, # since this would make comparison difficult. value_dict[slot] = value_label elif label_value_repetitions and slot in diag_seen_slots_dict: value_label = diag_seen_slots_value_dict[slot] # Get dialog act annotations inform_label = list(['none']) if (str(dialog_id), str(turn_itr), slot) in sys_inform_dict: inform_label = list([normalize_label(slot, i) for i in sys_inform_dict[(str(dialog_id), str(turn_itr), slot)]]) elif (str(dialog_id), str(turn_itr), 'booking-' + slot.split('-')[1]) in sys_inform_dict: inform_label = list([normalize_label(slot, i) for i in sys_inform_dict[(str(dialog_id), str(turn_itr), 'booking-' + slot.split('-')[1])]]) (informed_value, referred_slot, usr_utt_tok_label, class_type) = get_turn_label(value_label, inform_label, sys_utt_tok, usr_utt_tok, slot, diag_seen_slots_value_dict, slot_last_occurrence=True) inform_dict[slot] = informed_value if informed_value != 'none': inform_slot_dict[slot] = 1 else: inform_slot_dict[slot] = 0 # Generally don't use span prediction on sys utterance (but inform prediction instead). sys_utt_tok_label = [0 for _ in sys_utt_tok] # Determine what to do with value repetitions. # If value is unique in seen slots, then tag it, otherwise not, # since correct slot assignment can not be guaranteed anymore. if label_value_repetitions and slot in diag_seen_slots_dict: if class_type == 'copy_value' and list(diag_seen_slots_value_dict.values()).count(value_label) > 1: class_type = 'none' usr_utt_tok_label = [0 for _ in usr_utt_tok_label] sys_utt_tok_label_dict[slot] = sys_utt_tok_label usr_utt_tok_label_dict[slot] = usr_utt_tok_label if append_history: if use_history_labels: if swap_utterances: new_hst_utt_tok_label_dict[slot] = usr_utt_tok_label + sys_utt_tok_label + new_hst_utt_tok_label_dict[slot] else: new_hst_utt_tok_label_dict[slot] = sys_utt_tok_label + usr_utt_tok_label + new_hst_utt_tok_label_dict[slot] else: new_hst_utt_tok_label_dict[slot] = [0 for _ in sys_utt_tok_label + usr_utt_tok_label + new_hst_utt_tok_label_dict[slot]] # For now, we map all occurences of unpointable slot values # to none. However, since the labels will still suggest # a presence of unpointable slot values, the task of the # DST is still to find those values. It is just not # possible to do that via span prediction on the current input. if class_type == 'unpointable': class_type_dict[slot] = 'none' referral_dict[slot] = 'none' if analyze: if slot not in diag_seen_slots_dict or value_label != diag_seen_slots_value_dict[slot]: print("(%s): %s, " % (slot, value_label), end='') elif slot in diag_seen_slots_dict and class_type == diag_seen_slots_dict[slot] and class_type != 'copy_value' and class_type != 'inform': # If slot has seen before and its class type did not change, label this slot a not present, # assuming that the slot has not actually been mentioned in this turn. # Exceptions are copy_value and inform. If a seen slot has been tagged as copy_value or inform, # this must mean there is evidence in the original labels, therefore consider # them as mentioned again. class_type_dict[slot] = 'none' referral_dict[slot] = 'none' else: class_type_dict[slot] = class_type referral_dict[slot] = referred_slot # Remember that this slot was mentioned during this dialog already. if class_type != 'none': diag_seen_slots_dict[slot] = class_type diag_seen_slots_value_dict[slot] = value_label new_diag_state[slot] = class_type # Unpointable is not a valid class, therefore replace with # some valid class for now... if class_type == 'unpointable': new_diag_state[slot] = 'copy_value' if analyze: print("]") if swap_utterances: txt_a = usr_utt_tok txt_b = sys_utt_tok txt_a_lbl = usr_utt_tok_label_dict txt_b_lbl = sys_utt_tok_label_dict else: txt_a = sys_utt_tok txt_b = usr_utt_tok txt_a_lbl = sys_utt_tok_label_dict txt_b_lbl = usr_utt_tok_label_dict examples.append(DSTExample( guid=guid, text_a=txt_a, text_b=txt_b, history=hst_utt_tok, text_a_label=txt_a_lbl, text_b_label=txt_b_lbl, history_label=hst_utt_tok_label_dict, values=diag_seen_slots_value_dict.copy(), inform_label=inform_dict, inform_slot_label=inform_slot_dict, refer_label=referral_dict, diag_state=diag_state, class_label=class_type_dict)) # Update some variables. hst_utt_tok_label_dict = new_hst_utt_tok_label_dict.copy() diag_state = new_diag_state.copy() turn_itr += 1 if analyze: print("----------------------------------------------------------------------") return examples