import os import json from tqdm import tqdm import re from transformers import AutoTokenizer from convlab.util import load_dataset, load_nlu_data, load_dst_data, load_policy_data, load_nlg_data, load_e2e_data, load_rg_data, retrieve_utterances from convlab.base_models.t5.nlu.serialization import serialize_dialogue_acts, deserialize_dialogue_acts, equal_da_seq from convlab.base_models.t5.dst.serialization import serialize_dialogue_state, deserialize_dialogue_state, equal_state_seq def create_rg_data(dataset, data_dir, args): data_by_split = load_rg_data(dataset, speaker=args.speaker) data_dir = os.path.join(data_dir, args.speaker) os.makedirs(data_dir, exist_ok=True) data_splits = data_by_split.keys() for data_split in data_splits: data = [] for sample in tqdm(data_by_split[data_split], desc=f'{data_split} sample', leave=False): if len(sample['context']) == 0: continue context = '\n'.join([f"{turn['speaker']}: {turn['utterance']}" for turn in sample['context']]+[f'{sample["speaker"]}: ']) data.append(json.dumps({'context': context, 'response': sample['utterance']}, ensure_ascii=False)+'\n') file_name = os.path.join(data_dir, f"{data_split}.json") with open(file_name, "w", encoding='utf-8') as f: f.writelines(data) data_by_split[data_split] = data return data_by_split def create_nlu_data(dataset, data_dir, args): data_by_split = load_nlu_data(dataset, speaker=args.speaker, use_context=args.context_window_size>0, context_window_size=args.context_window_size) data_dir = os.path.join(data_dir, args.speaker, f'context_{args.context_window_size}') os.makedirs(data_dir, exist_ok=True) data_splits = data_by_split.keys() for data_split in data_splits: data = [] for sample in tqdm(data_by_split[data_split], desc=f'{data_split} sample', leave=False): response = f"{sample['speaker']}: {sample['utterance']}" if args.context_window_size>0: context = '\n'.join([f"{turn['speaker']}: {turn['utterance']}" for turn in sample['context']]+[response]) else: context = response dialogue_acts_seq = serialize_dialogue_acts(sample['dialogue_acts']) assert equal_da_seq(sample['dialogue_acts'], dialogue_acts_seq), print(sample['dialogue_acts'], dialogue_acts_seq, deserialize_dialogue_acts(dialogue_acts_seq)) data.append(json.dumps({'context': context, 'dialogue_acts_seq': dialogue_acts_seq}, ensure_ascii=False)+'\n') file_name = os.path.join(data_dir, f"{data_split}.json") with open(file_name, "w", encoding='utf-8') as f: f.writelines(data) data_by_split[data_split] = data return data_by_split def create_dst_data(dataset, data_dir, args): data_by_split = load_dst_data(dataset, speaker=args.speaker, use_context=args.context_window_size>0, context_window_size=args.context_window_size) data_dir = os.path.join(data_dir, args.speaker, f'context_{args.context_window_size}') os.makedirs(data_dir, exist_ok=True) data_splits = data_by_split.keys() for data_split in data_splits: data = [] for sample in tqdm(data_by_split[data_split], desc=f'{data_split} sample', leave=False): response = f"{sample['speaker']}: {sample['utterance']}" if args.context_window_size>0: context = '\n'.join([f"{turn['speaker']}: {turn['utterance']}" for turn in sample['context']]+[response]) else: context = response for domain in sample['state']: for slot in sample['state'][domain]: vs = sample['state'][domain][slot].split('|') # only the first variation of value sample['state'][domain][slot] = vs[0] state_seq = serialize_dialogue_state(sample['state']) assert equal_state_seq(sample['state'], state_seq), print(sample['state'], state_seq, deserialize_dialogue_state(state_seq)) data.append(json.dumps({'context': context, 'state_seq': state_seq}, ensure_ascii=False)+'\n') file_name = os.path.join(data_dir, f"{data_split}.json") with open(file_name, "w", encoding='utf-8') as f: f.writelines(data) data_by_split[data_split] = data return data_by_split def create_nlg_data(dataset, data_dir, args): data_by_split = load_nlu_data(dataset, speaker=args.speaker, use_context=args.context_window_size>0, context_window_size=args.context_window_size) data_dir = os.path.join(data_dir, args.speaker, f'context_{args.context_window_size}') os.makedirs(data_dir, exist_ok=True) data_splits = data_by_split.keys() for data_split in data_splits: data = [] for sample in tqdm(data_by_split[data_split], desc=f'{data_split} sample', leave=False): dialogue_acts_seq = serialize_dialogue_acts(sample['dialogue_acts']) if len(dialogue_acts_seq) == 0: # skip empty dialogue acts continue if args.context_window_size>0: context = '\n'.join([f"{turn['speaker']}: {turn['utterance']}" for turn in sample['context']]+[f'{sample["speaker"]}: ']) context = f'{dialogue_acts_seq}\n\n{context}' else: context = f'{dialogue_acts_seq}\n\n{sample["speaker"]}: ' assert equal_da_seq(sample['dialogue_acts'], dialogue_acts_seq), print(sample['dialogue_acts'], dialogue_acts_seq, deserialize_dialogue_acts(dialogue_acts_seq)) data.append(json.dumps({'context+da': context, 'response': sample['utterance']}, ensure_ascii=False)+'\n') file_name = os.path.join(data_dir, f"{data_split}.json") with open(file_name, "w", encoding='utf-8') as f: f.writelines(data) data_by_split[data_split] = data return data_by_split def create_goal2dialogue_data(dataset, data_dir, args): data_by_split = dataset os.makedirs(data_dir, exist_ok=True) data_splits = data_by_split.keys() for data_split in data_splits: data = [] for sample in tqdm(data_by_split[data_split], desc=f'{data_split} sample', leave=False): goal = re.sub(r'<.*?>', '', sample['goal']['description']) dialogue = '\n'.join([f"{turn['speaker']}: {turn['utterance']}" for turn in sample['turns']]) data.append(json.dumps({'goal': goal, 'dialogue': dialogue}, ensure_ascii=False)+'\n') file_name = os.path.join(data_dir, f"{data_split}.json") with open(file_name, "w", encoding='utf-8') as f: f.writelines(data) data_by_split[data_split] = data return data_by_split def create_retnlu_data(dataset, data_dir, args): dataset_name = dataset[list(dataset.keys())[0]][0]['dataset'] data_by_split = load_nlu_data(dataset, speaker=args.speaker, use_context=args.context_window_size>0, context_window_size=args.context_window_size) data_dir = os.path.join(data_dir, args.speaker, f'context_{args.context_window_size}', \ f'in_context_{args.retrieval_in_context}', f'topk_{args.retrieval_topk}') os.makedirs(data_dir, exist_ok=True) turn_pool = [] for d in args.retrieval_datasets: pool_dataset = load_dataset(d) for turn in load_nlu_data(pool_dataset, data_split='train', speaker=args.speaker)['train']: if any([len(das) > 0 for da_type, das in turn['dialogue_acts'].items()]): turn_pool.append({'dataset': d, **turn}) data_splits = data_by_split.keys() query_turns = [] for data_split in data_splits: query_turns.extend(data_by_split[data_split]) augmented_dataset = retrieve_utterances(query_turns, turn_pool, args.retrieval_topk, 'all-MiniLM-L6-v2') i = 0 for data_split in data_splits: data = [] for j in tqdm(range(len(data_by_split[data_split])), desc=f'{data_split} sample', leave=False): sample = augmented_dataset[i+j] response = f"{sample['speaker']}: {sample['utterance']}" if args.context_window_size>0: context = '\n'.join([f"{turn['speaker']}: {turn['utterance']}" for turn in sample['context']]+[response]) else: context = response context = ' '.join([dataset_name, context]) dialogue_acts_seq = serialize_dialogue_acts(sample['dialogue_acts']) assert equal_da_seq(sample['dialogue_acts'], dialogue_acts_seq), print(sample['dialogue_acts'], dialogue_acts_seq, deserialize_dialogue_acts(dialogue_acts_seq)) retrieved_turns = sample['retrieved_turns'] for t in retrieved_turns: # in-context learning retrieved_utterance = f"{t['dataset']} {t['speaker']}: {t['utterance']}" retrieved_dialogue_acts_seq = serialize_dialogue_acts(t['dialogue_acts']) if args.retrieval_in_context: context = f"{retrieved_utterance} => {retrieved_dialogue_acts_seq}\n\n" + context elif data_split != 'test': data.append(json.dumps({'context': retrieved_utterance, 'dialogue_acts_seq': retrieved_dialogue_acts_seq}, ensure_ascii=False)+'\n') data.append(json.dumps({'context': context, 'dialogue_acts_seq': dialogue_acts_seq}, ensure_ascii=False)+'\n') i += len(data_by_split[data_split]) file_name = os.path.join(data_dir, f"{data_split}.json") with open(file_name, "w", encoding='utf-8') as f: f.writelines(data) data_by_split[data_split] = data return data_by_split def get_max_len(data_by_split, tokenizer): for data_split in data_by_split.keys(): seq_len = {} for line in data_by_split[data_split]: item = json.loads(line.strip()) for column, seq in item.items(): seq_len.setdefault(column, []) seq_len[column].append(len(tokenizer.tokenize(seq))) print(f"data split: {data_split}") for column, lens in seq_len.items(): print(f'\t{column}\tmax_len: {max(lens)}\tmean_len: {round(sum(lens)/len(lens),2)}') if __name__ == '__main__': from argparse import ArgumentParser parser = ArgumentParser(description="create data for seq2seq training") parser.add_argument('--tasks', '-t', metavar='task_name', nargs='*', choices=['rg', 'nlu', 'dst', 'nlg', 'goal2dialogue', 'retnlu', 'retnlg'], help='names of tasks') parser.add_argument('--datasets', '-d', metavar='dataset_name', nargs='*', help='names of unified datasets') parser.add_argument('--speaker', '-s', type=str, choices=['user', 'system', 'all'], help='speaker(s)') parser.add_argument('--context_window_size', '-c', type=int, default=0, help='how many contextual utterances are considered') parser.add_argument('--len_tokenizer', '-l', type=str, default=None, help='name or path of tokenizer that used to get seq len') parser.add_argument('--ratio', '-r', type=float, default=None, help='how many data is used for training and evaluation') parser.add_argument('--dial_ids_order', '-o', type=int, default=None, help='which data order is used for experiments') parser.add_argument('--retrieval_datasets', metavar='dataset_name for retrieval augmentation', nargs='*', help='names of unified datasets for retrieval') parser.add_argument('--retrieval_topk', type=int, default=3, help='how many utterances to be retrieved') parser.add_argument('--retrieval_in_context', action='store_true', default=False, help='whether use the retrieved utterance by in-context learning') args = parser.parse_args() print(args) if args.len_tokenizer: tokenizer = AutoTokenizer.from_pretrained(args.len_tokenizer) for dataset_name in tqdm(args.datasets, desc='datasets'): if args.ratio: dataset = load_dataset(dataset_name, dial_ids_order=args.dial_ids_order, split2ratio={'train': args.ratio, 'validation': args.ratio}) else: dataset = load_dataset(dataset_name, args.dial_ids_order) for task_name in tqdm(args.tasks, desc='tasks', leave=False): data_dir = os.path.join('data', task_name, (dataset_name if not args.ratio else f'{dataset_name}_{args.ratio}_order{args.dial_ids_order}')) data_by_split = eval(f"create_{task_name}_data")(dataset, data_dir, args) if args.len_tokenizer: get_max_len(data_by_split, tokenizer)