diff --git a/convlab/policy/emoTUS/evaluate.py b/convlab/policy/emoTUS/evaluate.py
index 2204c26dcfbdcf391e4c403719c75807a76afd29..358a4828c7738c4544bdffbfa7108da72a6b08d1 100644
--- a/convlab/policy/emoTUS/evaluate.py
+++ b/convlab/policy/emoTUS/evaluate.py
@@ -34,6 +34,7 @@ def arg_parser():
     parser.add_argument("--use-sentiment", action="store_true")
     parser.add_argument("--emotion-mid", action="store_true")
     parser.add_argument("--weight", type=float, default=None)
+    parser.add_argument("--sample", action="store_true")
     return parser.parse_args()
 
 
@@ -47,6 +48,7 @@ class Evaluator:
         self.add_persona = kwargs.get("add_persona", False)
         self.emotion_mid = kwargs.get("emotion_mid", False)
         weight = kwargs.get("weight", None)
+        self.sample = kwargs.get("sample", False)
 
         self.usr = UserActionPolicy(
             model_checkpoint,
@@ -95,8 +97,11 @@ class Evaluator:
                     inputs, labels["action"], labels["emotion"])
 
             else:
+                mode = "max"
+                if self.sample:
+                    mode = "sample"
                 output = self.usr._parse_output(
-                    self.usr._generate_action(inputs, emotion_mode=emotion_mode))
+                    self.usr._generate_action(inputs, mode=mode, emotion_mode=emotion_mode))
                 usr_emo = output["emotion"]
                 usr_act = self.usr._remove_illegal_action(output["action"])
                 usr_utt = output["text"]
@@ -143,9 +148,13 @@ class Evaluator:
             self.read_generated_result(generated_file)
         else:
             print("You must specify the input_file or the generated_file")
+        mode = "max"
+        if self.sample:
+            mode = "sample"
 
         nlg_eval = {
             "golden": golden,
+            "mode": mode,
             "metrics": {},
             "dialog": self._transform_result()
         }
@@ -336,7 +345,8 @@ def main():
                      args.model_weight,
                      use_sentiment=args.use_sentiment,
                      emotion_mid=args.emotion_mid,
-                     weight=args.weight)
+                     weight=args.weight,
+                     sample=args.sample)
     print("model checkpoint", args.model_checkpoint)
     print("generated_file", args.generated_file)
     print("input_file", args.input_file)