diff --git a/convlab/policy/emoTUS/evaluate.py b/convlab/policy/emoTUS/evaluate.py
index 60a15e05c08cca45ada3600faeb3bf02f8fbe2ea..9d587e4a57eb2d71bb49b023a2d764b711eb43d9 100644
--- a/convlab/policy/emoTUS/evaluate.py
+++ b/convlab/policy/emoTUS/evaluate.py
@@ -49,7 +49,7 @@ class Evaluator:
         self.use_sentiment = kwargs.get("use_sentiment", False)
         self.add_persona = kwargs.get("add_persona", False)
         self.emotion_mid = kwargs.get("emotion_mid", False)
-        weight = kwargs.get("weight", None)
+        self.emotion_weight = kwargs.get("weight", None)
         self.sample = kwargs.get("sample", False)
 
         self.usr = UserActionPolicy(
@@ -58,7 +58,7 @@ class Evaluator:
             use_sentiment=self.use_sentiment,
             add_persona=self.add_persona,
             emotion_mid=self.emotion_mid,
-            weight=weight)
+            weight=self.emotion_weight)
 
         self.usr.load(os.path.join(model_checkpoint, "pytorch_model.bin"))
 
@@ -169,6 +169,7 @@ class Evaluator:
             nlg_eval["golden"] = False
 
         nlg_eval["mode"] = mode
+        nlg_eval["emotion_weight"] = self.emotion_weight
         nlg_eval["metrics"] = {}
         nlg_eval["dialog"] = self._transform_result()
 
@@ -237,6 +238,7 @@ class Evaluator:
                 scores[metric].append(s[metric])
 
         result = {}
+        result["emotion_weight"] = self.emotion_weight
         for metric in scores:
             result[metric] = sum(scores[metric])/len(scores[metric])
             print(f"{metric}: {result[metric]}")
@@ -276,8 +278,11 @@ class Evaluator:
         result["dialog"] = dialog_result
 
         basename = "semantic_evaluation_result"
-        json.dump(result, open(os.path.join(
-            self.model_checkpoint, f"{self.time}-{self.dataset}-{basename}.json"), 'w'))
+        json.dump(
+            result,
+            open(os.path.join(self.model_checkpoint,
+                              f"{self.time}-{self.dataset}-{basename}.json"), 'w'),
+            indent=2)
 
 
 def emotion_score(golden_emotions, gen_emotions, dirname=".", time="", no_neutral=False):