diff --git a/convlab2/base_models/gpt/create_data.py b/convlab2/base_models/gpt/create_data.py new file mode 100644 index 0000000000000000000000000000000000000000..3186fd3374b64aae7461c7883607f773c8d5924c --- /dev/null +++ b/convlab2/base_models/gpt/create_data.py @@ -0,0 +1,39 @@ +import os +import json +from tqdm import tqdm +import re +from convlab2.util import load_dataset + + +def create_lm_data(dataset, data_dir, args): + data_by_split = dataset + os.makedirs(data_dir, exist_ok=True) + + data_splits = data_by_split.keys() + for data_split in data_splits: + data = [] + for sample in tqdm(data_by_split[data_split], desc=f'{data_split} sample', leave=False): + if args.model_type == 'dialogpt': + dialogue = ' <|endoftext|> '.join([turn['utterance'] for turn in sample['turns']]) + else: + dialogue = ' '.join([f"{turn['speaker']}: {turn['utterance']}" for turn in sample['turns']]) + data.append(json.dumps({'dialogue': dialogue}, ensure_ascii=False)+'\n') + + file_name = os.path.join(data_dir, f"{data_split}.json") + with open(file_name, "w", encoding='utf-8') as f: + f.writelines(data) + + +if __name__ == '__main__': + from argparse import ArgumentParser + parser = ArgumentParser(description="create data for seq2seq training") + parser.add_argument('--tasks', '-t', metavar='task_name', nargs='*', choices=['lm'], help='names of tasks') + parser.add_argument('--datasets', '-d', metavar='dataset_name', nargs='*', help='names of unified datasets') + parser.add_argument('--model_type', '-m', metavar='model_type', help='type of the language model: gpt, dialogpt, ..') + args = parser.parse_args() + print(args) + for dataset_name in tqdm(args.datasets, desc='datasets'): + dataset = load_dataset(dataset_name) + for task_name in tqdm(args.tasks, desc='tasks', leave=False): + data_dir = os.path.join('data', task_name, dataset_name) + eval(f"create_{task_name}_data")(dataset, data_dir, args) diff --git a/convlab2/base_models/gpt/keyword_extraction/run.sh b/convlab2/base_models/gpt/keyword_extraction/run.sh new file mode 100644 index 0000000000000000000000000000000000000000..85d87296175ec357b2197907d11ec17534487af3 --- /dev/null +++ b/convlab2/base_models/gpt/keyword_extraction/run.sh @@ -0,0 +1,46 @@ +set -e +n_gpus=1 +task_name="lm" +dataset_name="multiwoz21" +data_dir="data/${task_name}/${dataset_name}" +output_dir="output/${task_name}/${dataset_name}" +cache_dir="../cache" +logging_dir="${output_dir}/runs" +train_file="${data_dir}/train.json" +validation_file="${data_dir}/validation.json" +test_file="${data_dir}/test.json" +source_column="dialogue" +max_length=512 +model_name_or_path="microsoft/DialoGPT-large" +per_device_train_batch_size=16 +per_device_eval_batch_size=16 +gradient_accumulation_steps=4 +lr=5e-5 +num_train_epochs=3 + +python ../create_data.py --tasks ${task_name} --datasets ${dataset_name} --model_type dialogpt + +python ../run_clm.py \ + --model_name_or_path ${model_name_or_path} \ + --train_file ${train_file} \ + --validation_file ${validation_file} \ + --source_column ${source_column} \ + --max_length ${max_length} \ + --do_train \ + --do_eval \ + --save_strategy epoch \ + --evaluation_strategy epoch \ + --load_best_model_at_end \ + --prediction_loss_only \ + --cache_dir ${cache_dir} \ + --output_dir ${output_dir} \ + --logging_dir ${logging_dir} \ + --overwrite_output_dir \ + --preprocessing_num_workers 4 \ + --per_device_train_batch_size ${per_device_train_batch_size} \ + --per_device_eval_batch_size ${per_device_eval_batch_size} \ + --gradient_accumulation_steps ${gradient_accumulation_steps} \ + --learning_rate ${lr} \ + --num_train_epochs ${num_train_epochs} \ + --debug underflow_overflow \ + --gradient_checkpointing diff --git a/convlab2/base_models/gpt/run_clm.py b/convlab2/base_models/gpt/run_clm.py new file mode 100644 index 0000000000000000000000000000000000000000..95e020d7ec5859531da740b8947723f1d403a845 --- /dev/null +++ b/convlab2/base_models/gpt/run_clm.py @@ -0,0 +1,575 @@ +#!/usr/bin/env python +# coding=utf-8 +# Copyright 2020 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Fine-tuning the library models for causal language modeling (GPT, GPT-2, CTRL, ...) on a text file or a dataset. +Modified from https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_clm.py +Here is the full list of checkpoints on the hub that can be fine-tuned by this script: +https://huggingface.co/models?filter=text-generation +""" +# You can also adapt this script on your own causal language modeling task. Pointers for this are left as comments. + +import logging +import math +import os +import sys +from dataclasses import dataclass, field +from itertools import chain +from typing import Optional + +import datasets +from datasets import load_dataset, load_metric + +import transformers +from transformers import ( + CONFIG_MAPPING, + MODEL_FOR_CAUSAL_LM_MAPPING, + AutoConfig, + AutoModelForCausalLM, + AutoTokenizer, + HfArgumentParser, + Trainer, + TrainingArguments, + DataCollatorForTokenClassification, + is_torch_tpu_available, + set_seed, +) +from transformers.trainer_utils import get_last_checkpoint +from transformers.utils import check_min_version +from transformers.utils.versions import require_version + + +# Will error if the minimal version of Transformers is not installed. Remove at your own risks. +check_min_version("4.17.0") + +require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt") + +logger = logging.getLogger(__name__) + + +MODEL_CONFIG_CLASSES = list(MODEL_FOR_CAUSAL_LM_MAPPING.keys()) +MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) + + +@dataclass +class ModelArguments: + """ + Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch. + """ + + model_name_or_path: Optional[str] = field( + default=None, + metadata={ + "help": "The model checkpoint for weights initialization." + "Don't set if you want to train a model from scratch." + }, + ) + model_type: Optional[str] = field( + default=None, + metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)}, + ) + config_overrides: Optional[str] = field( + default=None, + metadata={ + "help": "Override some existing default config settings when a model is trained from scratch. Example: " + "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index" + }, + ) + config_name: Optional[str] = field( + default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} + ) + tokenizer_name: Optional[str] = field( + default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} + ) + cache_dir: Optional[str] = field( + default=None, + metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"}, + ) + use_fast_tokenizer: bool = field( + default=True, + metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, + ) + truncation_side: Optional[str] = field( + default="right", + metadata={"help": "Which side to truncate, left or right."} + ) + model_revision: str = field( + default="main", + metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, + ) + use_auth_token: bool = field( + default=False, + metadata={ + "help": "Will use the token generated when running `transformers-cli login` (necessary to use this script " + "with private models)." + }, + ) + resize_position_embeddings: Optional[bool] = field( + default=None, + metadata={ + "help": "Whether to automatically resize the position embeddings if `max_source_length` exceeds " + "the model's position embeddings." + }, + ) + + def __post_init__(self): + if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): + raise ValueError( + "--config_overrides can't be used in combination with --config_name or --model_name_or_path" + ) + + +@dataclass +class DataTrainingArguments: + """ + Arguments pertaining to what data we are going to input our model for training and eval. + """ + + dataset_name: Optional[str] = field( + default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} + ) + dataset_config_name: Optional[str] = field( + default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} + ) + source_column: Optional[str] = field( + default=None, + metadata={"help": "The name of the column in the datasets containing the texts."}, + ) + train_file: Optional[str] = field( + default=None, metadata={"help": "The input training data file (a text, jsonlines or csv file)."} + ) + validation_file: Optional[str] = field( + default=None, + metadata={ + "help": "An optional input evaluation data file to evaluate the metrics on (a text, jsonlines or csv file)." + }, + ) + overwrite_cache: bool = field( + default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} + ) + preprocessing_num_workers: Optional[int] = field( + default=None, + metadata={"help": "The number of processes to use for the preprocessing."}, + ) + max_length: Optional[int] = field( + default=1024, + metadata={ + "help": "The maximum total input sequence length after tokenization. Sequences longer " + "than this will be truncated, sequences shorter will be padded." + }, + ) + pad_to_max_length: bool = field( + default=False, + metadata={ + "help": "Whether to pad all samples to model maximum sentence length. " + "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " + "efficient on GPU but very bad for TPU." + }, + ) + max_train_samples: Optional[int] = field( + default=None, + metadata={ + "help": "For debugging purposes or quicker training, truncate the number of training examples to this " + "value if set." + }, + ) + max_eval_samples: Optional[int] = field( + default=None, + metadata={ + "help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this " + "value if set." + }, + ) + ignore_pad_token_for_loss: bool = field( + default=True, + metadata={ + "help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not." + }, + ) + validation_split_percentage: Optional[int] = field( + default=5, + metadata={ + "help": "The percentage of the train set used as validation set in case there's no validation split" + }, + ) + keep_linebreaks: bool = field( + default=True, metadata={"help": "Whether to keep line breaks when using TXT files or not."} + ) + + def __post_init__(self): + if self.dataset_name is None and self.train_file is None and self.validation_file is None: + raise ValueError("Need either a dataset name or a training/validation file.") + else: + if self.train_file is not None: + extension = self.train_file.split(".")[-1] + assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." + if self.validation_file is not None: + extension = self.validation_file.split(".")[-1] + assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." + + +def main(): + # See all possible arguments in src/transformers/training_args.py + # or by passing the --help flag to this script. + # We now keep distinct sets of args, for a cleaner separation of concerns. + + parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) + if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): + # If we pass only one argument to the script and it's the path to a json file, + # let's parse it to get our arguments. + model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) + else: + model_args, data_args, training_args = parser.parse_args_into_dataclasses() + + # Setup logging + logging.basicConfig( + format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", + datefmt="%m/%d/%Y %H:%M:%S", + handlers=[logging.StreamHandler(sys.stdout)], + ) + log_level = training_args.get_process_log_level() + logger.setLevel(log_level) + datasets.utils.logging.set_verbosity(log_level) + transformers.utils.logging.set_verbosity(log_level) + transformers.utils.logging.enable_default_handler() + transformers.utils.logging.enable_explicit_format() + + # Log on each process the small summary: + logger.warning( + f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" + ) + logger.info(f"Training/evaluation parameters {training_args}") + + # Detecting last checkpoint. + last_checkpoint = None + if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: + last_checkpoint = get_last_checkpoint(training_args.output_dir) + if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: + raise ValueError( + f"Output directory ({training_args.output_dir}) already exists and is not empty. " + "Use --overwrite_output_dir to overcome." + ) + elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: + logger.info( + f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " + "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." + ) + + # Set seed before initializing model. + set_seed(training_args.seed) + + # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) + # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ + # (the dataset will be downloaded automatically from the datasets Hub). + # + # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called + # 'text' is found. You can easily tweak this behavior (see below). + # + # In distributed training, the load_dataset function guarantee that only one local process can concurrently + # download the dataset. + if data_args.dataset_name is not None: + # Downloading and loading a dataset from the hub. + raw_datasets = load_dataset( + data_args.dataset_name, + data_args.dataset_config_name, + cache_dir=model_args.cache_dir, + use_auth_token=True if model_args.use_auth_token else None, + ) + if "validation" not in raw_datasets.keys(): + raw_datasets["validation"] = load_dataset( + data_args.dataset_name, + data_args.dataset_config_name, + split=f"train[:{data_args.validation_split_percentage}%]", + cache_dir=model_args.cache_dir, + use_auth_token=True if model_args.use_auth_token else None, + ) + raw_datasets["train"] = load_dataset( + data_args.dataset_name, + data_args.dataset_config_name, + split=f"train[{data_args.validation_split_percentage}%:]", + cache_dir=model_args.cache_dir, + use_auth_token=True if model_args.use_auth_token else None, + ) + else: + data_files = {} + dataset_args = {} + if data_args.train_file is not None: + data_files["train"] = data_args.train_file + if data_args.validation_file is not None: + data_files["validation"] = data_args.validation_file + extension = ( + data_args.train_file.split(".")[-1] + if data_args.train_file is not None + else data_args.validation_file.split(".")[-1] + ) + if extension == "txt": + extension = "text" + dataset_args["keep_linebreaks"] = data_args.keep_linebreaks + raw_datasets = load_dataset( + extension, + data_files=data_files, + cache_dir=model_args.cache_dir, + use_auth_token=True if model_args.use_auth_token else None, + **dataset_args, + ) + # If no validation data is there, validation_split_percentage will be used to divide the dataset. + if "validation" not in raw_datasets.keys(): + raw_datasets["validation"] = load_dataset( + extension, + data_files=data_files, + split=f"train[:{data_args.validation_split_percentage}%]", + cache_dir=model_args.cache_dir, + use_auth_token=True if model_args.use_auth_token else None, + **dataset_args, + ) + raw_datasets["train"] = load_dataset( + extension, + data_files=data_files, + split=f"train[{data_args.validation_split_percentage}%:]", + cache_dir=model_args.cache_dir, + use_auth_token=True if model_args.use_auth_token else None, + **dataset_args, + ) + + # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at + # https://huggingface.co/docs/datasets/loading_datasets.html. + + # Load pretrained model and tokenizer + # + # Distributed training: + # The .from_pretrained methods guarantee that only one local process can concurrently + # download model & vocab. + config_kwargs = { + "cache_dir": model_args.cache_dir, + "revision": model_args.model_revision, + "use_auth_token": True if model_args.use_auth_token else None, + } + if model_args.config_name: + config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs) + elif model_args.model_name_or_path: + config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs) + else: + config = CONFIG_MAPPING[model_args.model_type]() + logger.warning("You are instantiating a new config instance from scratch.") + if model_args.config_overrides is not None: + logger.info(f"Overriding config: {model_args.config_overrides}") + config.update_from_string(model_args.config_overrides) + logger.info(f"New config: {config}") + + tokenizer_kwargs = { + "cache_dir": model_args.cache_dir, + "use_fast": model_args.use_fast_tokenizer, + "truncation_side": model_args.truncation_side, + "revision": model_args.model_revision, + "use_auth_token": True if model_args.use_auth_token else None, + } + if model_args.tokenizer_name: + tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **tokenizer_kwargs) + elif model_args.model_name_or_path: + tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **tokenizer_kwargs) + else: + raise ValueError( + "You are instantiating a new tokenizer from scratch. This is not supported by this script." + "You can do it from another script, save it, and load it from here, using --tokenizer_name." + ) + + if not tokenizer.pad_token: + tokenizer.pad_token = tokenizer.eos_token + + if model_args.model_name_or_path: + model = AutoModelForCausalLM.from_pretrained( + model_args.model_name_or_path, + from_tf=bool(".ckpt" in model_args.model_name_or_path), + config=config, + cache_dir=model_args.cache_dir, + revision=model_args.model_revision, + use_auth_token=True if model_args.use_auth_token else None, + ) + else: + model = AutoModelForCausalLM.from_config(config) + n_params = sum(dict((p.data_ptr(), p.numel()) for p in model.parameters()).values()) + logger.info(f"Training new model from scratch - Total size={n_params/2**20:.2f}M params") + + model.resize_token_embeddings(len(tokenizer)) + + if training_args.gradient_checkpointing: + # use_cache=True is incompatible with gradient checkpointing. + config.use_cache = False + + # Preprocessing the datasets. + # First we tokenize all the texts. + if training_args.do_train: + column_names = raw_datasets["train"].column_names + elif training_args.do_eval: + column_names = raw_datasets["validation"].column_names + else: + logger.info("There is nothing to do. Please pass `do_train` and/or `do_eval`.") + return + if data_args.source_column is None: + source_column = column_names[0] + else: + source_column = data_args.source_column + if source_column not in column_names: + raise ValueError( + f"--source_column' value '{data_args.source_column}' needs to be one of: {', '.join(column_names)}" + ) + + def preprocess_function(examples): + + inputs = [] + for i in range(len(examples[source_column])): + if len(examples[source_column][i]) > 0: + inputs.append(examples[source_column][i]) + + padding = "max_length" if data_args.pad_to_max_length else False + model_inputs = tokenizer(inputs, max_length=data_args.max_length, padding=padding, truncation=True) + + # If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore + # padding in the loss. Else pad in data_collator. + if padding == "max_length" and data_args.ignore_pad_token_for_loss: + model_inputs["labels"] = [ + [(l if l != tokenizer.pad_token_id else -100) for l in label] for label in model_inputs["input_ids"] + ] + else: + model_inputs["labels"] = model_inputs["input_ids"].copy() + + return model_inputs + + with training_args.main_process_first(desc="dataset map tokenization"): + tokenized_datasets = raw_datasets.map( + preprocess_function, + batched=True, + num_proc=data_args.preprocessing_num_workers, + remove_columns=column_names, + load_from_cache_file=not data_args.overwrite_cache, + desc="Running tokenizer on dataset", + ) + + lm_datasets = tokenized_datasets + + if training_args.do_train: + if "train" not in tokenized_datasets: + raise ValueError("--do_train requires a train dataset") + train_dataset = lm_datasets["train"] + if data_args.max_train_samples is not None: + max_train_samples = min(len(train_dataset), data_args.max_train_samples) + train_dataset = train_dataset.select(range(max_train_samples)) + + if training_args.do_eval: + if "validation" not in tokenized_datasets: + raise ValueError("--do_eval requires a validation dataset") + eval_dataset = lm_datasets["validation"] + if data_args.max_eval_samples is not None: + max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples) + eval_dataset = eval_dataset.select(range(max_eval_samples)) + + # Data collator + label_pad_token_id = -100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id + data_collator = DataCollatorForTokenClassification( + tokenizer, + label_pad_token_id=label_pad_token_id, + pad_to_multiple_of=8 if training_args.fp16 else None, + ) + + def preprocess_logits_for_metrics(logits, labels): + if isinstance(logits, tuple): + # Depending on the model and config, logits may contain extra tensors, + # like past_key_values, but logits always come first + logits = logits[0] + return logits.argmax(dim=-1) + + metric = load_metric("accuracy") + + def compute_metrics(eval_preds): + preds, labels = eval_preds + # preds have the same shape as the labels, after the argmax(-1) has been calculated + # by preprocess_logits_for_metrics but we need to shift the labels + labels = labels[:, 1:].reshape(-1) + preds = preds[:, :-1].reshape(-1) + return metric.compute(predictions=preds, references=labels) + + # Initialize our Trainer + trainer = Trainer( + model=model, + args=training_args, + train_dataset=train_dataset if training_args.do_train else None, + eval_dataset=eval_dataset if training_args.do_eval else None, + tokenizer=tokenizer, + # Data collator will default to DataCollatorWithPadding, so we change it. + data_collator=data_collator, + compute_metrics=compute_metrics if training_args.do_eval and not is_torch_tpu_available() else None, + preprocess_logits_for_metrics=preprocess_logits_for_metrics + if training_args.do_eval and not is_torch_tpu_available() + else None, + ) + + # Training + if training_args.do_train: + checkpoint = None + if training_args.resume_from_checkpoint is not None: + checkpoint = training_args.resume_from_checkpoint + elif last_checkpoint is not None: + checkpoint = last_checkpoint + train_result = trainer.train(resume_from_checkpoint=checkpoint) + trainer.save_model() # Saves the tokenizer too for easy upload + + metrics = train_result.metrics + max_train_samples = ( + data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset) + ) + metrics["train_samples"] = min(max_train_samples, len(train_dataset)) + + trainer.log_metrics("train", metrics) + trainer.save_metrics("train", metrics) + trainer.save_state() + + # Evaluation + if training_args.do_eval: + logger.info("*** Evaluate ***") + metrics = trainer.evaluate(metric_key_prefix="eval") + max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset) + metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset)) + try: + perplexity = math.exp(metrics["eval_loss"]) + except OverflowError: + perplexity = float("inf") + metrics["eval_perplexity"] = perplexity + + trainer.log_metrics("eval", metrics) + trainer.save_metrics("eval", metrics) + + kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-generation"} + if data_args.dataset_name is not None: + kwargs["dataset_tags"] = data_args.dataset_name + if data_args.dataset_config_name is not None: + kwargs["dataset_args"] = data_args.dataset_config_name + kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}" + else: + kwargs["dataset"] = data_args.dataset_name + + if training_args.push_to_hub: + trainer.push_to_hub(**kwargs) + else: + trainer.create_model_card(**kwargs) + + +def _mp_fn(index): + # For xla_spawn (TPUs) + main() + + +if __name__ == "__main__": + main()