diff --git a/convlab2/base_models/bert/create_data.py b/convlab2/base_models/bert/create_data.py new file mode 100644 index 0000000000000000000000000000000000000000..f85f9d1115d0607a12f01ad6a85fdc690cf32263 --- /dev/null +++ b/convlab2/base_models/bert/create_data.py @@ -0,0 +1,62 @@ +import os +import json +from tqdm import tqdm +from convlab2.util import load_dataset, load_nlu_data, load_dst_data, load_policy_data, load_nlg_data, load_e2e_data, load_rg_data +from nltk.tokenize import TreebankWordTokenizer, PunktSentenceTokenizer +from collections import Counter + +def create_bio_data(dataset, data_dir): + data_by_split = load_nlu_data(dataset, speaker='all') + os.makedirs(data_dir, exist_ok=True) + + sent_tokenizer = PunktSentenceTokenizer() + word_tokenizer = TreebankWordTokenizer() + + data_splits = data_by_split.keys() + cnt = Counter() + for data_split in data_splits: + data = [] + for sample in tqdm(data_by_split[data_split], desc=f'{data_split} sample', leave=False): + utterance = sample['utterance'] + dialogue_acts = [da for da in sample['dialogue_acts']['non-categorical'] if 'start' in da] + cnt[len(dialogue_acts)] += 1 + + sentences = sent_tokenizer.tokenize(utterance) + sent_spans = sent_tokenizer.span_tokenize(utterance) + tokens = [token for sent in sentences for token in word_tokenizer.tokenize(sent)] + token_spans = [(sent_span[0]+token_span[0], sent_span[0]+token_span[1]) for sent, sent_span in zip(sentences, sent_spans) for token_span in word_tokenizer.span_tokenize(sent)] + labels = ['O'] * len(tokens) + for da in dialogue_acts: + char_start = da['start'] + char_end = da['end'] + word_start, word_end = -1, -1 + for i, token_span in enumerate(token_spans): + if char_start == token_span[0]: + word_start = i + if char_end == token_span[1]: + word_end = i + 1 + if word_start == -1 and word_end == -1: + # char span does not match word, skip + continue + labels[word_start] = 'B' + for i in range(word_start+1, word_end): + labels[i] = "I" + data.append(json.dumps({'tokens': tokens, 'labels': labels})+'\n') + file_name = os.path.join(data_dir, f"{data_split}.json") + with open(file_name, "w") as f: + f.writelines(data) + print('num of spans in utterances', cnt) + +if __name__ == '__main__': + from argparse import ArgumentParser + parser = ArgumentParser(description="create data for seq2seq training") + parser.add_argument('--tasks', metavar='task_name', nargs='*', choices=['bio'], help='names of tasks') + parser.add_argument('--datasets', metavar='dataset_name', nargs='*', help='names of unified datasets') + parser.add_argument('--save_dir', metavar='save_directory', type=str, default='data', help='directory to save the data, default: data/$task_name/$dataset_name') + args = parser.parse_args() + print(args) + for dataset_name in tqdm(args.datasets, desc='datasets'): + dataset = load_dataset(dataset_name) + for task_name in tqdm(args.tasks, desc='tasks', leave=False): + data_dir = os.path.join(args.save_dir, task_name, dataset_name) + eval(f"create_{task_name}_data")(dataset, data_dir) diff --git a/convlab2/base_models/bert/run_bio.sh b/convlab2/base_models/bert/run_bio.sh new file mode 100644 index 0000000000000000000000000000000000000000..3d2e797c3020ea8d6e0ddcded1b900fb1141b384 --- /dev/null +++ b/convlab2/base_models/bert/run_bio.sh @@ -0,0 +1,49 @@ +n_gpus=8 +task_name="bio" +dataset_name="sgd" +data_dir="data/${task_name}/${dataset_name}" +output_dir="output/${task_name}/${dataset_name}" +cache_dir="cache" +logging_dir="${output_dir}/runs" +train_file="${data_dir}/train.json" +validation_file="${data_dir}/validation.json" +test_file="${data_dir}/test.json" +source_column="tokens" +target_column="labels" +model_name_or_path="bert-base-uncased" +per_device_train_batch_size=128 +per_device_eval_batch_size=512 +gradient_accumulation_steps=1 +lr=2e-5 +num_train_epochs=1 +metric_for_best_model="f1" + +python create_data.py --tasks ${task_name} --datasets ${dataset_name} --save_dir "data" + +python -m torch.distributed.launch \ + --nproc_per_node ${n_gpus} run_token_classification.py \ + --task_name ${task_name} \ + --train_file ${train_file} \ + --validation_file ${validation_file} \ + --test_file ${test_file} \ + --source_column ${source_column} \ + --target_column ${target_column} \ + --model_name_or_path ${model_name_or_path} \ + --do_train \ + --do_eval \ + --do_predict \ + --save_strategy epoch \ + --evaluation_strategy epoch \ + --load_best_model_at_end \ + --metric_for_best_model ${metric_for_best_model} \ + --cache_dir ${cache_dir} \ + --output_dir ${output_dir} \ + --logging_dir ${logging_dir} \ + --overwrite_output_dir \ + --preprocessing_num_workers 4 \ + --per_device_train_batch_size ${per_device_train_batch_size} \ + --per_device_eval_batch_size ${per_device_eval_batch_size} \ + --gradient_accumulation_steps ${gradient_accumulation_steps} \ + --learning_rate ${lr} \ + --num_train_epochs ${num_train_epochs} \ + --debug underflow_overflow diff --git a/convlab2/base_models/bert/run_token_classification.py b/convlab2/base_models/bert/run_token_classification.py new file mode 100644 index 0000000000000000000000000000000000000000..57e156d768b3ebf84514cc73187f7092d5e7082a --- /dev/null +++ b/convlab2/base_models/bert/run_token_classification.py @@ -0,0 +1,598 @@ +#!/usr/bin/env python +# coding=utf-8 +# Copyright 2020 The HuggingFace Team All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Fine-tuning the library models for token classification. +Modified from https://github.com/huggingface/transformers/blob/master/examples/pytorch/token-classification/run_ner.py +""" +# You can also adapt this script on your own token classification task and datasets. Pointers for this are left as comments. + +import logging +import os +import sys +import json +from dataclasses import dataclass, field +from typing import Optional + +import datasets +import numpy as np +from datasets import ClassLabel, load_dataset, load_metric + +import transformers +from transformers import ( + AutoConfig, + AutoModelForTokenClassification, + AutoTokenizer, + DataCollatorForTokenClassification, + HfArgumentParser, + PreTrainedTokenizerFast, + Trainer, + TrainingArguments, + set_seed, +) +from transformers.trainer_utils import EvalPrediction, get_last_checkpoint +from transformers.utils import check_min_version +from transformers.utils.versions import require_version + + +# Will error if the minimal version of Transformers is not installed. Remove at your own risks. +check_min_version("4.12.5") + +require_version("datasets>=1.16.1") + +logger = logging.getLogger(__name__) +os.environ["WANDB_DISABLED"] = "true" + + +@dataclass +class ModelArguments: + """ + Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. + """ + + model_name_or_path: str = field( + metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} + ) + config_name: Optional[str] = field( + default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} + ) + tokenizer_name: Optional[str] = field( + default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} + ) + cache_dir: Optional[str] = field( + default=None, + metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"}, + ) + model_revision: str = field( + default="main", + metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, + ) + use_auth_token: bool = field( + default=False, + metadata={ + "help": "Will use the token generated when running `transformers-cli login` (necessary to use this script " + "with private models)." + }, + ) + + +@dataclass +class DataTrainingArguments: + """ + Arguments pertaining to what data we are going to input our model for training and eval. + """ + + + task_name: Optional[str] = field( + default=None, metadata={"help": "The name of the task (ner, pos...)."} + ) + dataset_name: Optional[str] = field( + default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} + ) + dataset_config_name: Optional[str] = field( + default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} + ) + source_column: Optional[str] = field( + default=None, + metadata={"help": "The name of the column in the datasets containing the source texts."}, + ) + target_column: Optional[str] = field( + default=None, + metadata={"help": "The name of the column in the datasets containing the target labels."}, + ) + train_file: Optional[str] = field( + default=None, metadata={"help": "The input training data file (a jsonlines or csv file)."} + ) + validation_file: Optional[str] = field( + default=None, + metadata={ + "help": "An optional input evaluation data file to evaluate the metrics on (a jsonlines or csv file)." + }, + ) + test_file: Optional[str] = field( + default=None, + metadata={ + "help": "An optional input test data file to evaluate the metrics on (a jsonlines or csv file)." + }, + ) + overwrite_cache: bool = field( + default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} + ) + preprocessing_num_workers: Optional[int] = field( + default=None, + metadata={"help": "The number of processes to use for the preprocessing."}, + ) + max_seq_length: int = field( + default=None, + metadata={ + "help": "The maximum total input sequence length after tokenization. If set, sequences longer " + "than this will be truncated, sequences shorter will be padded." + }, + ) + pad_to_max_length: bool = field( + default=False, + metadata={ + "help": "Whether to pad all samples to model maximum sentence length. " + "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " + "efficient on GPU but very bad for TPU." + }, + ) + max_train_samples: Optional[int] = field( + default=None, + metadata={ + "help": "For debugging purposes or quicker training, truncate the number of training examples to this " + "value if set." + }, + ) + max_eval_samples: Optional[int] = field( + default=None, + metadata={ + "help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this " + "value if set." + }, + ) + max_predict_samples: Optional[int] = field( + default=None, + metadata={ + "help": "For debugging purposes or quicker training, truncate the number of prediction examples to this " + "value if set." + }, + ) + label_all_tokens: bool = field( + default=False, + metadata={ + "help": "Whether to put the label for one word on all tokens of generated by that word or just on the " + "one (in which case the other tokens will have a padding index)." + }, + ) + return_entity_level_metrics: bool = field( + default=False, + metadata={"help": "Whether to return all the entity levels during evaluation or just the overall ones."}, + ) + + def __post_init__(self): + if ( + self.dataset_name is None + and self.train_file is None + and self.validation_file is None + and self.test_file is None + ): + raise ValueError("Need either a dataset name or a training/validation/testing file.") + else: + if self.train_file is not None: + extension = self.train_file.split(".")[-1] + assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." + if self.validation_file is not None: + extension = self.validation_file.split(".")[-1] + assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." + if self.test_file is not None: + extension = self.test_file.split(".")[-1] + assert extension in ["csv", "json"], "`test_file` should be a csv or a json file." + + +def main(): + # See all possible arguments in src/transformers/training_args.py + # or by passing the --help flag to this script. + # We now keep distinct sets of args, for a cleaner separation of concerns. + + parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) + if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): + # If we pass only one argument to the script and it's the path to a json file, + # let's parse it to get our arguments. + model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) + else: + model_args, data_args, training_args = parser.parse_args_into_dataclasses() + + # Setup logging + logging.basicConfig( + format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", + datefmt="%m/%d/%Y %H:%M:%S", + handlers=[logging.StreamHandler(sys.stdout)], + ) + log_level = training_args.get_process_log_level() + logger.setLevel(log_level) + datasets.utils.logging.set_verbosity(log_level) + transformers.utils.logging.set_verbosity(log_level) + transformers.utils.logging.enable_default_handler() + transformers.utils.logging.enable_explicit_format() + + # Log on each process the small summary: + logger.warning( + f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" + ) + logger.info(f"Training/evaluation parameters {training_args}") + + # Detecting last checkpoint. + last_checkpoint = None + if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: + last_checkpoint = get_last_checkpoint(training_args.output_dir) + if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: + raise ValueError( + f"Output directory ({training_args.output_dir}) already exists and is not empty. " + "Use --overwrite_output_dir to overcome." + ) + elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: + logger.info( + f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " + "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." + ) + + # Set seed before initializing model. + set_seed(training_args.seed) + + # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) + # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ + # (the dataset will be downloaded automatically from the datasets Hub). + # + # For CSV/JSON files this script will use the first column for the source texts and the second column for the + # target labels (unless you specify column names for this with the `source_column` and `target_column` arguments). + # + # In distributed training, the load_dataset function guarantee that only one local process can concurrently + # download the dataset. + if data_args.dataset_name is not None: + # Downloading and loading a dataset from the hub. + raw_datasets = load_dataset( + data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir + ) + else: + data_files = {} + if data_args.train_file is not None: + data_files["train"] = data_args.train_file + extension = data_args.train_file.split(".")[-1] + if data_args.validation_file is not None: + data_files["validation"] = data_args.validation_file + extension = data_args.validation_file.split(".")[-1] + if data_args.test_file is not None: + data_files["test"] = data_args.test_file + extension = data_args.test_file.split(".")[-1] + raw_datasets = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir) + # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at + # https://huggingface.co/docs/datasets/loading_datasets.html. + + # must provide train dataset for label space + column_names = raw_datasets["train"].column_names + features = raw_datasets["train"].features + + if data_args.source_column is None: + source_column = column_names[0] + else: + source_column = data_args.source_column + if source_column not in column_names: + raise ValueError( + f"--source_column' value '{data_args.source_column}' needs to be one of: {', '.join(column_names)}" + ) + + if data_args.target_column is None: + target_column = column_names[1] + else: + target_column = data_args.target_column + if target_column not in column_names: + raise ValueError( + f"--target_column' value '{data_args.target_column}' needs to be one of: {', '.join(column_names)}" + ) + + # In the event the labels are not a `Sequence[ClassLabel]`, we will need to go through the dataset to get the + # unique labels. + def get_label_list(labels): + unique_labels = set() + for label in labels: + unique_labels = unique_labels | set(label) + label_list = list(unique_labels) + label_list.sort() + return label_list + + if isinstance(features[target_column].feature, ClassLabel): + label_list = features[target_column].feature.names + # No need to convert the labels since they are already ints. + label_to_id = {i: i for i in range(len(label_list))} + else: + label_list = get_label_list(raw_datasets["train"][target_column]) + label_to_id = {l: i for i, l in enumerate(label_list)} + num_labels = len(label_list) + + # Map that sends B-Xxx label to its I-Xxx counterpart for label_all_tokens + b_to_i_label = [] + for idx, label in enumerate(label_list): + if label.startswith("B-") and label.replace("B-", "I-") in label_list: + b_to_i_label.append(label_list.index(label.replace("B-", "I-"))) + else: + b_to_i_label.append(idx) + + # Load pretrained model and tokenizer + # + # Distributed training: + # The .from_pretrained methods guarantee that only one local process can concurrently + # download model & vocab. + config = AutoConfig.from_pretrained( + model_args.config_name if model_args.config_name else model_args.model_name_or_path, + num_labels=num_labels, + label2id=label_to_id, + id2label={i: l for l, i in label_to_id.items()}, + finetuning_task=data_args.task_name, + cache_dir=model_args.cache_dir, + revision=model_args.model_revision, + use_auth_token=True if model_args.use_auth_token else None, + ) + + tokenizer_name_or_path = model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path + if config.model_type in {"gpt2", "roberta"}: + tokenizer = AutoTokenizer.from_pretrained( + tokenizer_name_or_path, + cache_dir=model_args.cache_dir, + use_fast=True, + revision=model_args.model_revision, + use_auth_token=True if model_args.use_auth_token else None, + add_prefix_space=True, + ) + else: + tokenizer = AutoTokenizer.from_pretrained( + tokenizer_name_or_path, + cache_dir=model_args.cache_dir, + use_fast=True, + revision=model_args.model_revision, + use_auth_token=True if model_args.use_auth_token else None, + ) + + model = AutoModelForTokenClassification.from_pretrained( + model_args.model_name_or_path, + from_tf=bool(".ckpt" in model_args.model_name_or_path), + config=config, + cache_dir=model_args.cache_dir, + revision=model_args.model_revision, + use_auth_token=True if model_args.use_auth_token else None, + ) + + # Tokenizer check: this script requires a fast tokenizer. + if not isinstance(tokenizer, PreTrainedTokenizerFast): + raise ValueError( + "This example script only works for models that have a fast tokenizer. Checkout the big table of models " + "at https://huggingface.co/transformers/index.html#supported-frameworks to find the model types that meet this " + "requirement" + ) + + # Preprocessing the dataset + # Padding strategy + padding = "max_length" if data_args.pad_to_max_length else False + + # Tokenize all texts and align the labels with them. + def tokenize_and_align_labels(examples): + tokenized_inputs = tokenizer( + examples[source_column], + padding=padding, + truncation=True, + max_length=data_args.max_seq_length, + # We use this argument because the texts in our dataset are lists of words (with a label for each word). + is_split_into_words=True, + ) + labels = [] + for i, label in enumerate(examples[target_column]): + word_ids = tokenized_inputs.word_ids(batch_index=i) + previous_word_idx = None + label_ids = [] + for word_idx in word_ids: + # Special tokens have a word id that is None. We set the label to -100 so they are automatically + # ignored in the loss function. + if word_idx is None: + label_ids.append(-100) + # We set the label for the first token of each word. + elif word_idx != previous_word_idx: + label_ids.append(label_to_id[label[word_idx]]) + # For the other tokens in a word, we set the label to either the current label or -100, depending on + # the label_all_tokens flag. + else: + if data_args.label_all_tokens: + label_ids.append(b_to_i_label[label_to_id[label[word_idx]]]) + else: + label_ids.append(-100) + previous_word_idx = word_idx + + labels.append(label_ids) + tokenized_inputs["labels"] = labels + return tokenized_inputs + + if training_args.do_train: + if "train" not in raw_datasets: + raise ValueError("--do_train requires a train dataset") + train_dataset = raw_datasets["train"] + if data_args.max_train_samples is not None: + train_dataset = train_dataset.select(range(data_args.max_train_samples)) + with training_args.main_process_first(desc="train dataset map pre-processing"): + train_dataset = train_dataset.map( + tokenize_and_align_labels, + batched=True, + num_proc=data_args.preprocessing_num_workers, + load_from_cache_file=not data_args.overwrite_cache, + desc="Running tokenizer on train dataset", + ) + + if training_args.do_eval: + if "validation" not in raw_datasets: + raise ValueError("--do_eval requires a validation dataset") + eval_dataset = raw_datasets["validation"] + if data_args.max_eval_samples is not None: + eval_dataset = eval_dataset.select(range(data_args.max_eval_samples)) + with training_args.main_process_first(desc="validation dataset map pre-processing"): + eval_dataset = eval_dataset.map( + tokenize_and_align_labels, + batched=True, + num_proc=data_args.preprocessing_num_workers, + load_from_cache_file=not data_args.overwrite_cache, + desc="Running tokenizer on validation dataset", + ) + + if training_args.do_predict: + if "test" not in raw_datasets: + raise ValueError("--do_predict requires a test dataset") + predict_dataset = raw_datasets["test"] + if data_args.max_predict_samples is not None: + predict_dataset = predict_dataset.select(range(data_args.max_predict_samples)) + with training_args.main_process_first(desc="prediction dataset map pre-processing"): + predict_dataset = predict_dataset.map( + tokenize_and_align_labels, + batched=True, + num_proc=data_args.preprocessing_num_workers, + load_from_cache_file=not data_args.overwrite_cache, + desc="Running tokenizer on prediction dataset", + ) + + # Data collator + data_collator = DataCollatorForTokenClassification(tokenizer, pad_to_multiple_of=8 if training_args.fp16 else None) + + # Metrics + metric = load_metric("seqeval") + + def compute_metrics(p: EvalPrediction): + predictions, labels = p + predictions = np.argmax(predictions, axis=2) + + # Remove ignored index (special tokens) + true_predictions = [ + [label_list[p] for (p, l) in zip(prediction, label) if l != -100] + for prediction, label in zip(predictions, labels) + ] + true_labels = [ + [label_list[l] for (p, l) in zip(prediction, label) if l != -100] + for prediction, label in zip(predictions, labels) + ] + + results = metric.compute(predictions=true_predictions, references=true_labels) + if data_args.return_entity_level_metrics: + # Unpack nested dictionaries + final_results = {} + for key, value in results.items(): + if isinstance(value, dict): + for n, v in value.items(): + final_results[f"{key}_{n}"] = v + else: + final_results[key] = value + return final_results + else: + return { + "precision": results["overall_precision"], + "recall": results["overall_recall"], + "f1": results["overall_f1"], + "accuracy": results["overall_accuracy"], + } + + # Initialize our Trainer + trainer = Trainer( + model=model, + args=training_args, + train_dataset=train_dataset if training_args.do_train else None, + eval_dataset=eval_dataset if training_args.do_eval else None, + tokenizer=tokenizer, + data_collator=data_collator, + compute_metrics=compute_metrics, + ) + + # Training + if training_args.do_train: + checkpoint = None + if training_args.resume_from_checkpoint is not None: + checkpoint = training_args.resume_from_checkpoint + elif last_checkpoint is not None: + checkpoint = last_checkpoint + train_result = trainer.train(resume_from_checkpoint=checkpoint) + trainer.save_model() # Saves the tokenizer too for easy upload + + metrics = train_result.metrics + max_train_samples = ( + data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset) + ) + metrics["train_samples"] = min(max_train_samples, len(train_dataset)) + + trainer.log_metrics("train", metrics) + trainer.save_metrics("train", metrics) + trainer.save_state() + + # Evaluation + if training_args.do_eval: + logger.info("*** Evaluate ***") + + metrics = trainer.evaluate() + + max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset) + metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset)) + + trainer.log_metrics("eval", metrics) + trainer.save_metrics("eval", metrics) + + # Predict + if training_args.do_predict: + logger.info("*** Predict ***") + + predictions, labels, metrics = trainer.predict(predict_dataset, metric_key_prefix="predict") + predictions = np.argmax(predictions, axis=2) + + # Remove ignored index (special tokens) + true_predictions = [ + [label_list[p] for (p, l) in zip(prediction, label) if l != -100] + for prediction, label in zip(predictions, labels) + ] + + trainer.log_metrics("predict", metrics) + trainer.save_metrics("predict", metrics) + + # Save predictions + output_predictions_file = os.path.join(training_args.output_dir, "predictions.json") + if trainer.is_world_process_zero(): + with open(output_predictions_file, "w") as writer: + for sample, prediction in zip(raw_datasets["test"], true_predictions): + sample["predictions"] = prediction + writer.write(json.dumps(sample)+'\n') + + kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": data_args.task_name} + if data_args.dataset_name is not None: + kwargs["dataset_tags"] = data_args.dataset_name + if data_args.dataset_config_name is not None: + kwargs["dataset_args"] = data_args.dataset_config_name + kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}" + else: + kwargs["dataset"] = data_args.dataset_name + + if training_args.push_to_hub: + trainer.push_to_hub(**kwargs) + else: + trainer.create_model_card(**kwargs) + + +def _mp_fn(index): + # For xla_spawn (TPUs) + main() + + +if __name__ == "__main__": + main() diff --git a/setup.py b/setup.py index 3fe3b3c914f71c0db87bf5217930bfd3b6831c45..4d57bbbeb8141fea33d80812d1cf0a6b00bfc546 100755 --- a/setup.py +++ b/setup.py @@ -42,6 +42,7 @@ setup( 'torch>=1.6', 'transformers>=4.0', 'datasets>=1.8', + 'seqeval', 'spacy', 'allennlp', 'simplejson',