#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat May 9 23:55:59 2020 @author: mario """ import connected_k_dominating_set import lp_to_nx_graph import networkx as nx import matplotlib.pyplot as plt import gurobipy as gp import sys import datetime import math def add_constraints(G, m, nodes, root): m.addConstr(nodes[root] >= 1) def add_path_constraints(G, m, nodes, root): m.addConstrs((nodes[v] * len(nx.algorithms.shortest_path(G, root, v))) <= gp.quicksum(nodes) for v in G.nodes) def add_path_constraints2(G, m, nodes): m.addConstrs((nodes[v] * nodes[w] * len(nx.algorithms.shortest_path(G, v, w))) <= gp.quicksum(nodes) for v in G.nodes for w in G.nodes) def add_path_constraints3(G, m, nodes, root): m.addConstr(gp.quicksum(nodes[v] * len(nx.algorithms.shortest_path(G, root, v)) for v in G.nodes) <= (gp.quicksum(nodes)+1)*gp.quicksum(nodes)/2) def add_path_constraints4(G, m, nodes): m.addConstr(gp.quicksum(nodes[v] * nodes[w] * len(nx.algorithms.shortest_path(G, v, w)) for v in G.nodes for w in G.nodes) <= (gp.quicksum(nodes)+1)*gp.quicksum(nodes)/2) def add_vertex_separator_degree_constraints(G, m, nodes): for i in G.nodes: if(G.degree[i] < 6): for j in G.nodes: if i != j and j not in G.neighbors(i): min_ij_sep = connected_k_dominating_set.min_ij_separator(G, i, j, {i}) m.addConstr(gp.quicksum(nodes[s] for s in min_ij_sep) >= nodes[i] + nodes[j] - 1) def add_all_vertex_separator_constraaints(G, m, nodes): for i in G.nodes: for j in G.nodes: if i != j and j not in G.neighbors(i): min_ij_sep = connected_k_dominating_set.min_ij_separator(G, i, j, {i}) m.addConstr(gp.quicksum(nodes[s] for s in min_ij_sep) >= nodes[i] + nodes[j] - 1) def model(G, k, root): m, nodes = connected_k_dominating_set.model(G, k, "MINkRCDS") add_constraints(G, m, nodes, root) # add_path_constraints(G, m, nodes, root) # add_path_constraints2(G, m, nodes) # add_path_constraints3(G, m, nodes, root) # add_path_constraints4(G, m, nodes) # add_vertex_separator_degree_constraints(G, m, nodes) # add_all_vertex_separator_constraaints(G, m, nodes) return m, nodes def solve(G, k, root, maxIterations): m, nodes = model(G, k, root) return connected_k_dominating_set.solve_iteratively(G, k, m, nodes, maxIterations) if __name__ == '__main__': # G = nx.Graph() # G.add_nodes_from(range(16)) # G.add_edges_from([(0,1), (0,2), (1,2), (1,3), (1,4), (1,7), (2,4), (2,5), (2,8), (3,6), (3,7), (3,4), (3,10), (4,7), (4,8), (4, 5), (4,11), (5,8), (5,9), (5,12), # (6,7), (6,10), (7,8), (7,10), (7,13), (7,11), (8,9), (8,11), (8,12), (8,14), (10,11), (10,13), (11,13), (11,14), (11,12), (13,14), (13,15), (14,15)]) # G.add_edges_from([(0,1), (0,2), (1,3), (1,4), (2,4), (2,5), (3,6), (3,7), (4,7), (4,8), (5,8), (5,9), # (6,10), (7,10), (7,11), (8,11), (8,12), (9,12), (10,13), (11,13), (11,14), (12,14), (13,15), (14,15)]) # maxIterations = float("inf") # maxIterations = 5 G = lp_to_nx_graph.read(sys.argv[1]) if(len(sys.argv) > 2): k = int(sys.argv[2]) else: k = 1 if(len(sys.argv) > 3): maxIterations = int(sys.argv[3]) else: maxIterations = float("inf") starttime = datetime.datetime.now() ds, iterations = solve(G, k, 0, maxIterations) endtime = datetime.datetime.now() duration = endtime- starttime duration_sec = duration.total_seconds() print(f"iterations: {iterations}, duration(s): {duration_sec}") color_map = ['red' if i in ds else 'green' for i in G.nodes] # nx.draw(G, node_color = color_map, with_labels = True) nx.draw_kamada_kawai(G, node_color = color_map) plt.show()