diff --git a/python/raw code/connected_k_dominating_set.py b/python/raw code/connected_k_dominating_set.py
new file mode 100755
index 0000000000000000000000000000000000000000..6cf5356bd71ef4db35328275912af9d2fec949d9
--- /dev/null
+++ b/python/raw code/connected_k_dominating_set.py	
@@ -0,0 +1,66 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+Created on Sat May  9 23:55:40 2020
+
+@author: mario
+"""
+
+import k_transitive_closure 
+import k_dominating_set
+import networkx as nx
+import matplotlib.pyplot as plt
+import gurobipy as gp
+from gurobipy import GRB
+
+def solve(G, k):
+    m, nodes = model(G, k, "MINkCDS")
+    add_constraints(G, k, m)
+#
+    return solve_iteratively(G, k, m, nodes)
+
+def min_ij_separator(G, i, j, C_i):
+    N_ci = {v for c in C_i for v in G.neighbors(c)}
+    G_prime = nx.Graph(G)
+    C_i_prime = C_i.copy()
+    C_i_prime.update(N_ci)
+    G_prime.remove_edges_from(G.subgraph(C_i_prime).edges)
+    # dijkstra
+    R_j = nx.algorithms.dag.descendants(G_prime, j)
+    return R_j.intersection(N_ci)
+    
+def model(G, k, name):
+    m, nodes = k_dominating_set.model(G,k,name)
+    add_constraints(G, m, nodes)
+    return m, nodes
+
+def add_base_connectivity_constraint(G, m, nodes):
+    m.addConstrs(nodes[v] <= gp.quicksum(nodes[w] for w in G.neighbors(v)) for v in G.nodes)
+
+def add_constraints(G, m, nodes):
+    add_base_connectivity_constraint(G, m, nodes)
+ 
+def solve_iteratively(G, k, m, nodes, maxIterations):
+    iterations = 0
+    m.optimize()
+    
+    ds = {i for i,x_i in enumerate(m.getVars()) if x_i.x == 1}
+    
+    G_prime_prime = G.subgraph(ds)
+    while(not nx.is_connected(G_prime_prime)) and iterations < maxIterations:
+        iterations+=1
+        C = [c for c in nx.algorithms.components.connected_components(G_prime_prime)]
+        for i in range(len(C)-1):
+            C_i = C[i]
+            for j in range(i+1, len(C)):
+                C_j = C[j]
+                h = next(iter(C_i))
+                l = next(iter(C_j))
+                min_ij_sep = min_ij_separator(G, h, l, C_i)
+                m.addConstr(gp.quicksum(nodes[s] for s in min_ij_sep) >= nodes[h] + nodes[l] - 1)
+        
+        m.optimize()
+        ds = {i for i,x_i in enumerate(m.getVars()) if x_i.x == 1}
+        G_prime_prime = G.subgraph(ds)
+
+    return ds, iterations
\ No newline at end of file
diff --git a/python/raw code/dominating_set.py b/python/raw code/dominating_set.py
new file mode 100755
index 0000000000000000000000000000000000000000..e34df5b67d69513135caeacba71438d3fba886b9
--- /dev/null
+++ b/python/raw code/dominating_set.py	
@@ -0,0 +1,33 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+Created on Sat May  9 23:53:13 2020
+
+@author: mario
+"""
+import networkx as nx
+import gurobipy as gp
+from gurobipy import GRB
+    
+
+def add_constraints(G, m, nodes):
+    m.addConstrs(((gp.quicksum(nodes[n] for n in G.neighbors(v)) + nodes[v] )>= 1) for v in G.nodes)
+
+
+def model(G, name):
+    m = gp.Model(name)
+    
+    nodes = m.addVars(G.nodes, vtype = GRB.BINARY, name = "nodes")
+
+    m.setObjective(gp.quicksum(nodes), GRB.MINIMIZE)
+
+    add_constraints(G,m,nodes)
+    
+    return m, nodes
+
+def solve(G):
+    m, nodes = model(G,'DS')
+    m.optimize()
+    # ds = {v for j,x_j in enumerate(m.getVars()) for i,v in enumerate(G.nodes) if j == i}
+    ds = {i for i,x_i in enumerate(m.getVars()) if x_i.x == 1}
+    return ds
\ No newline at end of file
diff --git a/python/raw code/k_dominating_set.py b/python/raw code/k_dominating_set.py
new file mode 100755
index 0000000000000000000000000000000000000000..ad1f7b2a17bdbb757918aabb0c8123dcfb72577a
--- /dev/null
+++ b/python/raw code/k_dominating_set.py	
@@ -0,0 +1,18 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+Created on Sat May  9 23:55:30 2020
+
+@author: mario
+"""
+import dominating_set
+import k_transitive_closure
+import networkx as nx
+
+def solve(G,k):
+    G_prime = k_transitive_closure.make_closure(G,k)
+    dominating_set.solve(G_prime)
+    
+def model(G, k, name):
+    G_prime = k_transitive_closure.make_closure(G,k)
+    return dominating_set.model(G_prime, name)
\ No newline at end of file
diff --git a/python/raw code/k_transitive_closure.py b/python/raw code/k_transitive_closure.py
new file mode 100755
index 0000000000000000000000000000000000000000..a0b9179b1021c5dcd618b84dd511d53ac1903c04
--- /dev/null
+++ b/python/raw code/k_transitive_closure.py	
@@ -0,0 +1,32 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+Created on Sat May  9 19:00:59 2020
+
+@author: mario
+"""
+
+import networkx as nx
+import matplotlib.pyplot as plt
+
+# G is supposed to be a undirected networx.Graph
+def make_closure(G, k):
+    G_prime = nx.Graph(G)
+    for v in G.nodes:
+        neighbors = set(G.neighbors(v))
+        for i in range(k-1):
+            neighbors.update([w for n in neighbors for w in G.neighbors(n)])
+        
+        G_prime.add_edges_from((v,n) for n in neighbors)
+    
+    return G_prime
+
+
+if __name__ == '__main__':
+    G = nx.Graph()
+    G.add_nodes_from(range(10))
+    G.add_edges_from((i,i+1) for i in range(9))
+    
+    G_prime = make_closure(G,10)
+    nx.draw(G_prime)
+    plt.show()
diff --git a/python/raw code/lp_to_nx_graph.py b/python/raw code/lp_to_nx_graph.py
new file mode 100755
index 0000000000000000000000000000000000000000..38e12436fc25cb7c9ea393507fca9dece708ce21
--- /dev/null
+++ b/python/raw code/lp_to_nx_graph.py	
@@ -0,0 +1,56 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+Created on Wed May 13 17:03:41 2020
+
+@author: mario
+"""
+
+import networkx as nx
+import re
+
+# def lp_to_nx_graph(strInput):
+#     nodePattern = re.compile(r'node\([0-9]+\.\.[0-9]+\)\.')
+#     print(nodePattern.findall("node(0..195)."))
+    
+    
+# lp_to_nx_graph("")
+
+
+def cleanLP(lpSTR):
+	lpSTR = lpSTR.replace(" ", "")
+	lpSTR = lpSTR.replace("\t", "")
+	newLPList = []
+	for line in lpSTR.split("\n"):
+		toAdd = line
+		if "%" in line:
+			toAdd = line[:line.index("%")]
+		if toAdd != "":
+			newLPList.append(toAdd)
+	return newLPList
+
+def lpStrToGraphNX(lpSTR):
+	lpList = cleanLP(lpSTR)
+	graph = nx.empty_graph(0)
+	for part in lpList:
+		if ".." in part and "node" in part:
+			startrange = int(part[5:part.index("..")])
+			endrange = int(part[part.index("..")+2:part.index(").")])
+			graph.add_nodes_from(range(startrange, endrange))
+		elif "." in part and ".." not in part:
+			for i in part.split("."):
+				if "node(" in i:
+					graph.add_node(int(i[5:-1]))
+				elif "edge(" in i:
+					first = int(i[5:i.index(",")])
+					second = int(i[i.index(",")+1:-1])
+					graph.add_edge(first, second)
+					if(first == 13 or first == 9):
+						if(second == 13 or second == 9):
+							print("Hello")
+	return graph
+
+def read(filenameRaw):
+    fileIn = open(filenameRaw,'r')    
+    graph = lpStrToGraphNX(fileIn.read())
+    return graph
\ No newline at end of file
diff --git a/python/raw code/rooted_connected_k_dominating_set.py b/python/raw code/rooted_connected_k_dominating_set.py
new file mode 100755
index 0000000000000000000000000000000000000000..82f5a06dc8e531e355ef7100c51541d3cc9b339f
--- /dev/null
+++ b/python/raw code/rooted_connected_k_dominating_set.py	
@@ -0,0 +1,95 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+Created on Sat May  9 23:55:59 2020
+
+@author: mario
+"""
+
+import connected_k_dominating_set
+import lp_to_nx_graph
+import networkx as nx
+import matplotlib.pyplot as plt
+import gurobipy as gp
+import sys
+import datetime
+
+
+def add_constraints(G, m, nodes, root):
+    m.addConstr(nodes[root] >= 1)
+
+def add_path_constraints(G, m, nodes, root):
+    m.addConstrs((nodes[v] * len(nx.algorithms.shortest_path(G, root, v))) <= gp.quicksum(nodes) for v in G.nodes)
+
+def add_path_constraints2(G, m, nodes):
+    m.addConstrs((nodes[v] * nodes[w] * len(nx.algorithms.shortest_path(G, v, w))) <= gp.quicksum(nodes) for v in G.nodes for w in G.nodes)
+
+def add_path_constraints3(G, m, nodes, root):
+    m.addConstr(gp.quicksum(nodes[v] * len(nx.algorithms.shortest_path(G, root, v)) for v in G.nodes) <= (gp.quicksum(nodes)+1)*gp.quicksum(nodes)/2)
+    
+def add_path_constraints4(G, m, nodes):
+    m.addConstr(gp.quicksum(nodes[v] * nodes[w] * len(nx.algorithms.shortest_path(G, v, w)) for v in G.nodes for w in G.nodes) <= (gp.quicksum(nodes)+1)*gp.quicksum(nodes)/2)
+
+def add_vertex_separator_degree_constraints(G, m, nodes):
+    for i in G.nodes:
+        if(G.degree[i] < 6):
+            for j in G.nodes:
+                if i != j and j not in G.neighbors(i):
+                    min_ij_sep = connected_k_dominating_set.min_ij_separator(G, i, j, {i})
+                    m.addConstr(gp.quicksum(nodes[s] for s in min_ij_sep) >= nodes[i] + nodes[j] - 1)
+                    
+def add_all_vertex_separator_constraaints(G, m, nodes):
+    for i in G.nodes:
+        for j in G.nodes:
+            if i != j and j not in G.neighbors(i):
+                min_ij_sep = connected_k_dominating_set.min_ij_separator(G, i, j, {i})
+                m.addConstr(gp.quicksum(nodes[s] for s in min_ij_sep) >= nodes[i] + nodes[j] - 1)
+                    
+
+def model(G, k, root):
+    m, nodes = connected_k_dominating_set.model(G, k, "MINkRCDS")
+    add_constraints(G, m, nodes, root)
+    # add_path_constraints(G, m, nodes, root)
+    # add_path_constraints2(G, m, nodes)
+    # add_path_constraints3(G, m, nodes, root)
+    # add_path_constraints4(G, m, nodes)
+    # add_vertex_separator_degree_constraints(G, m, nodes)
+    # add_all_vertex_separator_constraaints(G, m, nodes)
+    return m, nodes
+
+def solve(G, k, root, maxIterations):
+    m, nodes = model(G, k, root)
+    return connected_k_dominating_set.solve_iteratively(G, k, m, nodes, maxIterations)
+
+if __name__ == '__main__':
+    # G = nx.Graph()
+    # G.add_nodes_from(range(16))
+    # G.add_edges_from([(0,1), (0,2), (1,2), (1,3), (1,4), (1,7), (2,4), (2,5), (2,8), (3,6), (3,7), (3,4), (3,10), (4,7), (4,8), (4, 5), (4,11), (5,8), (5,9), (5,12),
+    #                   (6,7), (6,10), (7,8), (7,10), (7,13), (7,11), (8,9), (8,11), (8,12), (8,14), (10,11), (10,13), (11,13), (11,14), (11,12), (13,14), (13,15), (14,15)])
+    
+    # G.add_edges_from([(0,1), (0,2), (1,3), (1,4), (2,4), (2,5), (3,6), (3,7), (4,7), (4,8), (5,8), (5,9),
+    #                   (6,10), (7,10), (7,11), (8,11), (8,12), (9,12), (10,13), (11,13), (11,14), (12,14), (13,15), (14,15)])
+    
+    # maxIterations = float("inf")
+    # maxIterations = 5
+    
+    G = lp_to_nx_graph.read(sys.argv[1])
+    
+    if(len(sys.argv) > 2):
+        k = int(sys.argv[2])
+    else:
+        k = 1
+    if(len(sys.argv) > 3):
+        maxIterations = int(sys.argv[3])
+    else:
+        maxIterations = float("inf")
+        
+    starttime = datetime.datetime.now()
+    ds, iterations = solve(G, k, 0, maxIterations)
+    endtime = datetime.datetime.now()
+    duration = endtime- starttime
+    duration_sec = duration.total_seconds()
+    print(f"iterations: {iterations}, duration(s): {duration_sec}")
+    color_map = ['red' if i in ds else 'green' for i in G.nodes]
+    nx.draw(G, node_color = color_map)
+    plt.show()
\ No newline at end of file