diff --git a/Latex/abstract.tex b/Latex/abstract.tex
new file mode 100644
index 0000000000000000000000000000000000000000..880358be94fc5a32fd26a659151ead0dc0516829
--- /dev/null
+++ b/Latex/abstract.tex
@@ -0,0 +1,3 @@
+\section{Abstract}\raggedbottom 
+Maximizing photosynthetic outcomes is one of many different objectives of a plant. In this thesis we present/ examine a method to predict an optimal veneation pattern for leafs based on the minimal number of leaf cells that have to be transformed into vein cells to supply the entire leaf with nutrients and water. The model only focusses on the number of cells and disregards other aspects of the vascular system, like the vein hierarchy. To implement this model we used a special variant of the Minimum Dominating Set Problem which we implemented using Integer Linear Programming. We call this variant to model the vascular system the Minimum Connected rooted $k$-hop Dominating Set Problem. Our results show that our implementation is not capable of solving larger instances in a reasonable amount of time. In comparison to an implementation in Answer Set Programming our implementation performs worse using the instances that represent plant leafs. We present a detailled comparison between both versions and tested instances of different structure and size. We analyzed why the Integer Linear Programming implementation performes bad on the leaf graphs. The tests also revealed that on randomly generated graphs the Integer Linear Programming implementation outperformed the Answert Set Programming implemantion. 
+\pagebreak
diff --git a/Latex/ba.tex b/Latex/ba.tex
index 15c15d483db3d8c19e0ff00fa6b7a9d25282fb4b..8e283d5555d36de164e09d4f6addee929419a097 100644
--- a/Latex/ba.tex
+++ b/Latex/ba.tex
@@ -52,7 +52,8 @@
 % werden soll, dann benutzen Sie die folgende Zeile mit
 % englisch fuer englische Sprache
 % deutsch fuer deutsche Sprache
-\newcommand{\sprache}{deutsch}
+%\newcommand{\sprache}{deutsch}
+\newcommand{\sprache}{englisch}
 
 % Hier wird eingestellt, ob es sich bei der Arbeit um eine Bachelor-
 % oder Masterarbeit handelt (unpassendes auskommentieren!):
@@ -82,9 +83,10 @@
 \input{introduction}
 \input{preliminaries}
 \input{methods}
-%\input{definitions}
-%\input{ilp}
-%\input{implementation}
+\input{implementation}
+\input{results}
+\input{discussion}
+\input{conclusion}
 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 %%%% ENDE TEXTTEIL %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
diff --git a/Latex/bilder/TestedGraphs.ipe b/Latex/bilder/TestedGraphs.ipe
new file mode 100644
index 0000000000000000000000000000000000000000..09c2f94de2f366159c5be0c5b0e8adba0a1f761e
--- /dev/null
+++ b/Latex/bilder/TestedGraphs.ipe
@@ -0,0 +1,1684 @@
+<?xml version="1.0"?>
+<!DOCTYPE ipe SYSTEM "ipe.dtd">
+<ipe version="70218" creator="Ipe 7.2.20">
+<info created="D:20200128174124" modified="D:20200804004222"/>
+<ipestyle name="basic">
+<symbol name="arrow/arc(spx)">
+<path stroke="sym-stroke" fill="sym-stroke" pen="sym-pen">
+0 0 m
+-1 0.333 l
+-1 -0.333 l
+h
+</path>
+</symbol>
+<symbol name="arrow/farc(spx)">
+<path stroke="sym-stroke" fill="white" pen="sym-pen">
+0 0 m
+-1 0.333 l
+-1 -0.333 l
+h
+</path>
+</symbol>
+<symbol name="arrow/ptarc(spx)">
+<path stroke="sym-stroke" fill="sym-stroke" pen="sym-pen">
+0 0 m
+-1 0.333 l
+-0.8 0 l
+-1 -0.333 l
+h
+</path>
+</symbol>
+<symbol name="arrow/fptarc(spx)">
+<path stroke="sym-stroke" fill="white" pen="sym-pen">
+0 0 m
+-1 0.333 l
+-0.8 0 l
+-1 -0.333 l
+h
+</path>
+</symbol>
+<symbol name="mark/circle(sx)" transformations="translations">
+<path fill="sym-stroke">
+0.6 0 0 0.6 0 0 e
+0.4 0 0 0.4 0 0 e
+</path>
+</symbol>
+<symbol name="mark/disk(sx)" transformations="translations">
+<path fill="sym-stroke">
+0.6 0 0 0.6 0 0 e
+</path>
+</symbol>
+<symbol name="mark/fdisk(sfx)" transformations="translations">
+<group>
+<path fill="sym-fill">
+0.5 0 0 0.5 0 0 e
+</path>
+<path fill="sym-stroke" fillrule="eofill">
+0.6 0 0 0.6 0 0 e
+0.4 0 0 0.4 0 0 e
+</path>
+</group>
+</symbol>
+<symbol name="mark/box(sx)" transformations="translations">
+<path fill="sym-stroke" fillrule="eofill">
+-0.6 -0.6 m
+0.6 -0.6 l
+0.6 0.6 l
+-0.6 0.6 l
+h
+-0.4 -0.4 m
+0.4 -0.4 l
+0.4 0.4 l
+-0.4 0.4 l
+h
+</path>
+</symbol>
+<symbol name="mark/square(sx)" transformations="translations">
+<path fill="sym-stroke">
+-0.6 -0.6 m
+0.6 -0.6 l
+0.6 0.6 l
+-0.6 0.6 l
+h
+</path>
+</symbol>
+<symbol name="mark/fsquare(sfx)" transformations="translations">
+<group>
+<path fill="sym-fill">
+-0.5 -0.5 m
+0.5 -0.5 l
+0.5 0.5 l
+-0.5 0.5 l
+h
+</path>
+<path fill="sym-stroke" fillrule="eofill">
+-0.6 -0.6 m
+0.6 -0.6 l
+0.6 0.6 l
+-0.6 0.6 l
+h
+-0.4 -0.4 m
+0.4 -0.4 l
+0.4 0.4 l
+-0.4 0.4 l
+h
+</path>
+</group>
+</symbol>
+<symbol name="mark/cross(sx)" transformations="translations">
+<group>
+<path fill="sym-stroke">
+-0.43 -0.57 m
+0.57 0.43 l
+0.43 0.57 l
+-0.57 -0.43 l
+h
+</path>
+<path fill="sym-stroke">
+-0.43 0.57 m
+0.57 -0.43 l
+0.43 -0.57 l
+-0.57 0.43 l
+h
+</path>
+</group>
+</symbol>
+<symbol name="arrow/fnormal(spx)">
+<path stroke="sym-stroke" fill="white" pen="sym-pen">
+0 0 m
+-1 0.333 l
+-1 -0.333 l
+h
+</path>
+</symbol>
+<symbol name="arrow/pointed(spx)">
+<path stroke="sym-stroke" fill="sym-stroke" pen="sym-pen">
+0 0 m
+-1 0.333 l
+-0.8 0 l
+-1 -0.333 l
+h
+</path>
+</symbol>
+<symbol name="arrow/fpointed(spx)">
+<path stroke="sym-stroke" fill="white" pen="sym-pen">
+0 0 m
+-1 0.333 l
+-0.8 0 l
+-1 -0.333 l
+h
+</path>
+</symbol>
+<symbol name="arrow/linear(spx)">
+<path stroke="sym-stroke" pen="sym-pen">
+-1 0.333 m
+0 0 l
+-1 -0.333 l
+</path>
+</symbol>
+<symbol name="arrow/fdouble(spx)">
+<path stroke="sym-stroke" fill="white" pen="sym-pen">
+0 0 m
+-1 0.333 l
+-1 -0.333 l
+h
+-1 0 m
+-2 0.333 l
+-2 -0.333 l
+h
+</path>
+</symbol>
+<symbol name="arrow/double(spx)">
+<path stroke="sym-stroke" fill="sym-stroke" pen="sym-pen">
+0 0 m
+-1 0.333 l
+-1 -0.333 l
+h
+-1 0 m
+-2 0.333 l
+-2 -0.333 l
+h
+</path>
+</symbol>
+<pen name="heavier" value="0.8"/>
+<pen name="fat" value="1.2"/>
+<pen name="ultrafat" value="2"/>
+<symbolsize name="large" value="5"/>
+<symbolsize name="small" value="2"/>
+<symbolsize name="tiny" value="1.1"/>
+<arrowsize name="large" value="10"/>
+<arrowsize name="small" value="5"/>
+<arrowsize name="tiny" value="3"/>
+<color name="red" value="1 0 0"/>
+<color name="blue" value="0 0 1"/>
+<color name="green" value="0 1 0"/>
+<color name="yellow" value="1 1 0"/>
+<color name="orange" value="1 0.647 0"/>
+<color name="gold" value="1 0.843 0"/>
+<color name="purple" value="0.627 0.125 0.941"/>
+<color name="gray" value="0.745"/>
+<color name="brown" value="0.647 0.165 0.165"/>
+<color name="navy" value="0 0 0.502"/>
+<color name="pink" value="1 0.753 0.796"/>
+<color name="seagreen" value="0.18 0.545 0.341"/>
+<color name="turquoise" value="0.251 0.878 0.816"/>
+<color name="violet" value="0.933 0.51 0.933"/>
+<color name="darkblue" value="0 0 0.545"/>
+<color name="darkcyan" value="0 0.545 0.545"/>
+<color name="darkgray" value="0.663"/>
+<color name="darkgreen" value="0 0.392 0"/>
+<color name="darkmagenta" value="0.545 0 0.545"/>
+<color name="darkorange" value="1 0.549 0"/>
+<color name="darkred" value="0.545 0 0"/>
+<color name="lightblue" value="0.678 0.847 0.902"/>
+<color name="lightcyan" value="0.878 1 1"/>
+<color name="lightgray" value="0.827"/>
+<color name="lightgreen" value="0.565 0.933 0.565"/>
+<color name="lightyellow" value="1 1 0.878"/>
+<dashstyle name="dotted" value="[1 3] 0"/>
+<dashstyle name="dashed" value="[4] 0"/>
+<dashstyle name="dash dotted" value="[4 2 1 2] 0"/>
+<dashstyle name="dash dot dotted" value="[4 2 1 2 1 2] 0"/>
+<textsize name="large" value="\large"/>
+<textsize name="small" value="\small"/>
+<textsize name="tiny" value="\tiny"/>
+<textsize name="Large" value="\Large"/>
+<textsize name="LARGE" value="\LARGE"/>
+<textsize name="huge" value="\huge"/>
+<textsize name="Huge" value="\Huge"/>
+<textsize name="footnote" value="\footnotesize"/>
+<textstyle name="center" begin="\begin{center}" end="\end{center}"/>
+<textstyle name="itemize" begin="\begin{itemize}" end="\end{itemize}"/>
+<textstyle name="item" begin="\begin{itemize}\item{}" end="\end{itemize}"/>
+<gridsize name="4 pts" value="4"/>
+<gridsize name="8 pts (~3 mm)" value="8"/>
+<gridsize name="16 pts (~6 mm)" value="16"/>
+<gridsize name="32 pts (~12 mm)" value="32"/>
+<gridsize name="10 pts (~3.5 mm)" value="10"/>
+<gridsize name="20 pts (~7 mm)" value="20"/>
+<gridsize name="14 pts (~5 mm)" value="14"/>
+<gridsize name="28 pts (~10 mm)" value="28"/>
+<gridsize name="56 pts (~20 mm)" value="56"/>
+<anglesize name="90 deg" value="90"/>
+<anglesize name="60 deg" value="60"/>
+<anglesize name="45 deg" value="45"/>
+<anglesize name="30 deg" value="30"/>
+<anglesize name="22.5 deg" value="22.5"/>
+<opacity name="10%" value="0.1"/>
+<opacity name="30%" value="0.3"/>
+<opacity name="50%" value="0.5"/>
+<opacity name="75%" value="0.75"/>
+<tiling name="falling" angle="-60" step="4" width="1"/>
+<tiling name="rising" angle="30" step="4" width="1"/>
+</ipestyle>
+<page>
+<layer name="alpha"/>
+<view layers="alpha" active="alpha"/>
+<use layer="alpha" matrix="1 0 0 1 224 0" name="mark/disk(sx)" pos="256 832" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 0" name="mark/disk(sx)" pos="256 800" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 0" name="mark/disk(sx)" pos="256 768" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 0" name="mark/disk(sx)" pos="256 736" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 0" name="mark/disk(sx)" pos="256 704" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 0" name="mark/disk(sx)" pos="256 672" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 0" name="mark/disk(sx)" pos="256 640" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 0" name="mark/disk(sx)" pos="256 608" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 0" name="mark/disk(sx)" pos="256 576" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 0" name="mark/disk(sx)" pos="256 544" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 0" name="mark/disk(sx)" pos="256 512" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 0" name="mark/disk(sx)" pos="272 560" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 0" name="mark/disk(sx)" pos="288 576" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 0" name="mark/disk(sx)" pos="304 592" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 0" name="mark/disk(sx)" pos="320 608" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 0" name="mark/disk(sx)" pos="240 560" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 0" name="mark/disk(sx)" pos="224 576" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 0" name="mark/disk(sx)" pos="208 592" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 0" name="mark/disk(sx)" pos="192 608" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 0" name="mark/disk(sx)" pos="240 816" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 0" name="mark/disk(sx)" pos="224 800" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 0" name="mark/disk(sx)" pos="208 784" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 0" name="mark/disk(sx)" pos="192 768" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 0" name="mark/disk(sx)" pos="272 816" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 0" name="mark/disk(sx)" pos="288 800" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 0" name="mark/disk(sx)" pos="304 784" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 0" name="mark/disk(sx)" pos="320 768" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 0" name="mark/disk(sx)" pos="192 736" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 0" name="mark/disk(sx)" pos="192 704" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 0" name="mark/disk(sx)" pos="192 672" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 0" name="mark/disk(sx)" pos="192 640" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 0" name="mark/disk(sx)" pos="320 640" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 0" name="mark/disk(sx)" pos="320 672" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 0" name="mark/disk(sx)" pos="320 704" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 0" name="mark/disk(sx)" pos="320 736" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 0" name="mark/disk(sx)" pos="272 784" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 0" name="mark/disk(sx)" pos="240 784" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 0" name="mark/disk(sx)" pos="224 768" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 0" name="mark/disk(sx)" pos="288 768" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 0" name="mark/disk(sx)" pos="208 752" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 0" name="mark/disk(sx)" pos="240 752" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 0" name="mark/disk(sx)" pos="272 752" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 0" name="mark/disk(sx)" pos="304 752" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 0" name="mark/disk(sx)" pos="224 736" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 0" name="mark/disk(sx)" pos="288 736" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 0" name="mark/disk(sx)" pos="208 720" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 0" name="mark/disk(sx)" pos="240 720" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 0" name="mark/disk(sx)" pos="272 720" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 0" name="mark/disk(sx)" pos="304 720" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 0" name="mark/disk(sx)" pos="224 704" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 0" name="mark/disk(sx)" pos="288 704" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 0" name="mark/disk(sx)" pos="208 688" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 0" name="mark/disk(sx)" pos="240 688" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 0" name="mark/disk(sx)" pos="272 688" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 0" name="mark/disk(sx)" pos="304 688" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 0" name="mark/disk(sx)" pos="208 656" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 0" name="mark/disk(sx)" pos="208 624" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 0" name="mark/disk(sx)" pos="224 672" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 0" name="mark/disk(sx)" pos="224 640" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 0" name="mark/disk(sx)" pos="224 608" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 0" name="mark/disk(sx)" pos="240 656" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 0" name="mark/disk(sx)" pos="240 624" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 0" name="mark/disk(sx)" pos="240 592" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 0" name="mark/disk(sx)" pos="272 656" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 0" name="mark/disk(sx)" pos="272 624" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 0" name="mark/disk(sx)" pos="272 592" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 0" name="mark/disk(sx)" pos="288 672" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 0" name="mark/disk(sx)" pos="288 640" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 0" name="mark/disk(sx)" pos="288 608" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 0" name="mark/disk(sx)" pos="304 624" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 0" name="mark/disk(sx)" pos="304 656" size="normal" stroke="black"/>
+<path matrix="1 0 0 1 352 0" stroke="black">
+64 768 m
+128 832 l
+192 768 l
+192 608 l
+128 544 l
+64 608 l
+64 736 l
+128 800 l
+144 816 l
+144 816 l
+</path>
+<path matrix="1 0 0 1 352 0" stroke="black">
+64 768 m
+64 736 l
+64 736 l
+</path>
+<path matrix="1 0 0 1 352 0" stroke="black">
+80 784 m
+80 592 l
+80 592 l
+</path>
+<path matrix="1 0 0 1 352 0" stroke="black">
+96 800 m
+96 576 l
+96 576 l
+</path>
+<path matrix="1 0 0 1 352 0" stroke="black">
+112 816 m
+112 560 l
+112 560 l
+</path>
+<path matrix="1 0 0 1 352 0" stroke="black">
+128 832 m
+128 512 l
+128 512 l
+</path>
+<path matrix="1 0 0 1 352 0" stroke="black">
+144 816 m
+144 560 l
+144 560 l
+</path>
+<path matrix="1 0 0 1 352 0" stroke="black">
+160 800 m
+160 576 l
+160 576 l
+</path>
+<path matrix="1 0 0 1 352 0" stroke="black">
+176 784 m
+176 592 l
+176 592 l
+</path>
+<path matrix="1 0 0 1 352 0" stroke="black">
+64 704 m
+160 800 l
+160 800 l
+</path>
+<path matrix="1 0 0 1 352 0" stroke="black">
+176 784 m
+64 672 l
+64 672 l
+</path>
+<path matrix="1 0 0 1 352 0" stroke="black">
+64 640 m
+192 768 l
+192 768 l
+</path>
+<path matrix="1 0 0 1 352 0" stroke="black">
+192 736 m
+64 608 l
+64 608 l
+</path>
+<path matrix="1 0 0 1 352 0" stroke="black">
+80 592 m
+192 704 l
+192 704 l
+</path>
+<path matrix="1 0 0 1 352 0" stroke="black">
+192 672 m
+96 576 l
+96 576 l
+</path>
+<path matrix="1 0 0 1 352 0" stroke="black">
+112 560 m
+192 640 l
+192 640 l
+</path>
+<path matrix="1 0 0 1 352 0" stroke="black">
+64 640 m
+144 560 l
+144 560 l
+</path>
+<path matrix="1 0 0 1 352 0" stroke="black">
+64 672 m
+160 576 l
+160 576 l
+</path>
+<path matrix="1 0 0 1 352 0" stroke="black">
+64 704 m
+176 592 l
+176 592 l
+</path>
+<path matrix="1 0 0 1 352 0" stroke="black">
+64 736 m
+192 608 l
+192 608 l
+</path>
+<path matrix="1 0 0 1 352 0" stroke="black">
+64 768 m
+192 640 l
+192 640 l
+</path>
+<path matrix="1 0 0 1 352 0" stroke="black">
+80 784 m
+192 672 l
+192 672 l
+</path>
+<path matrix="1 0 0 1 352 0" stroke="black">
+96 800 m
+192 704 l
+192 704 l
+</path>
+<path matrix="1 0 0 1 352 0" stroke="black">
+112 816 m
+192 736 l
+192 736 l
+</path>
+<path matrix="1 0 0 1 352 0" stroke="black">
+128 832 m
+192 768 l
+192 768 l
+</path>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="288 816" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="304 800" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="320 784" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="336 768" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="272 800" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="256 784" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="240 768" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="240 736" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="240 704" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="336 736" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="336 704" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="272 704" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="304 704" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="256 720" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="288 720" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="320 720" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="304 736" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="272 736" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="256 752" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="288 752" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="320 752" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="304 768" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="272 768" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="288 784" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="352 720" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="368 736" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="224 720" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="208 736" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="288 688" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="288 656" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="288 624" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="288 592" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="288 560" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="288 528" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="288 496" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="288 464" size="normal" stroke="green"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="384 720" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="400 704" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="192 720" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="176 704" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="400 672" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="416 688" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="432 672" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="432 640" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="304 512" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="320 528" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="336 544" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="352 560" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="368 576" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="384 592" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="400 608" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="416 624" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="176 672" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="160 688" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="144 672" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="144 640" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="160 624" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="176 608" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="192 592" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="208 576" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="224 560" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="240 544" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="256 528" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="272 512" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="304 544" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="272 544" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="256 560" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="320 560" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="336 576" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="304 576" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="272 576" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="240 576" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="224 592" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="256 592" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="320 592" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="352 592" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="368 608" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="336 608" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="304 608" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="272 608" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="240 608" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="208 608" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="192 624" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="224 624" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="256 624" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="320 624" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="352 624" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="384 624" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="400 640" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="368 640" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="336 640" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="304 640" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="272 640" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="240 640" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="208 640" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="176 640" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="160 656" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="192 656" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="224 656" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="256 656" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="320 656" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="352 656" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="384 656" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="416 656" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="368 672" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="336 672" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="304 672" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="272 672" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="240 672" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="208 672" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="192 688" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="224 688" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="256 688" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="320 688" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="352 688" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="384 688" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="368 704" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 128 -320" name="mark/disk(sx)" pos="208 704" size="normal" stroke="black"/>
+<path matrix="1 0 0 1 128 -320" stroke="black">
+288 816 m
+336 768 l
+336 704 l
+368 736 l
+400 704 l
+400 672 l
+416 688 l
+432 672 l
+432 640 l
+288 496 l
+288 464 l
+288 464 l
+</path>
+<path matrix="1 0 0 1 128 -320" stroke="black">
+288 816 m
+240 768 l
+240 704 l
+208 736 l
+176 704 l
+176 672 l
+160 688 l
+144 672 l
+144 640 l
+288 496 l
+288 816 l
+288 816 l
+</path>
+<path matrix="1 0 0 1 128 -320" stroke="black">
+304 800 m
+304 512 l
+304 512 l
+</path>
+<path matrix="1 0 0 1 128 -320" stroke="black">
+320 528 m
+320 784 l
+</path>
+<path matrix="1 0 0 1 128 -320" stroke="black">
+336 704 m
+336 544 l
+</path>
+<path matrix="1 0 0 1 128 -320" stroke="black">
+352 560 m
+352 720 l
+</path>
+<path matrix="1 0 0 1 128 -320" stroke="black">
+368 736 m
+368 576 l
+</path>
+<path matrix="1 0 0 1 128 -320" stroke="black">
+384 720 m
+384 592 l
+</path>
+<path matrix="1 0 0 1 128 -320" stroke="black">
+400 672 m
+400 608 l
+</path>
+<path matrix="1 0 0 1 128 -320" stroke="black">
+416 688 m
+416 624 l
+</path>
+<path matrix="1 0 0 1 128 -320" stroke="black">
+272 800 m
+272 512 l
+</path>
+<path matrix="1 0 0 1 128 -320" stroke="black">
+256 784 m
+256 544 l
+</path>
+<path matrix="1 0 0 1 128 -320" stroke="black">
+240 704 m
+240 544 l
+</path>
+<path matrix="1 0 0 1 128 -320" stroke="black">
+224 720 m
+224 560 l
+</path>
+<path matrix="1 0 0 1 128 -320" stroke="black">
+208 736 m
+208 576 l
+</path>
+<path matrix="1 0 0 1 128 -320" stroke="black">
+192 720 m
+192 592 l
+</path>
+<path matrix="1 0 0 1 128 -320" stroke="black">
+176 672 m
+176 608 l
+</path>
+<path matrix="1 0 0 1 128 -320" stroke="black">
+160 688 m
+160 624 l
+</path>
+<path matrix="1 0 0 1 128 -320" stroke="black">
+144 672 m
+304 512 l
+304 512 l
+</path>
+<path matrix="1 0 0 1 128 -320" stroke="black">
+176 672 m
+320 528 l
+</path>
+<path matrix="1 0 0 1 128 -320" stroke="black">
+176 704 m
+336 544 l
+336 544 l
+</path>
+<path matrix="1 0 0 1 128 -320" stroke="black">
+192 720 m
+352 560 l
+</path>
+<path matrix="1 0 0 1 128 -320" stroke="black">
+240 704 m
+368 576 l
+</path>
+<path matrix="1 0 0 1 128 -320" stroke="black">
+240 736 m
+384 592 l
+</path>
+<path matrix="1 0 0 1 128 -320" stroke="black">
+240 768 m
+400 608 l
+</path>
+<path matrix="1 0 0 1 128 -320" stroke="black">
+256 784 m
+416 624 l
+</path>
+<path matrix="1 0 0 1 128 -320" stroke="black">
+272 800 m
+336 736 l
+</path>
+<path matrix="1 0 0 1 128 -320" stroke="black">
+352 720 m
+432 640 l
+</path>
+<path matrix="1 0 0 1 128 -320" stroke="black">
+432 672 m
+272 512 l
+</path>
+<path matrix="1 0 0 1 128 -320" stroke="black">
+400 672 m
+256 528 l
+</path>
+<path matrix="1 0 0 1 128 -320" stroke="black">
+400 704 m
+240 544 l
+</path>
+<path matrix="1 0 0 1 128 -320" stroke="black">
+384 720 m
+224 560 l
+</path>
+<path matrix="1 0 0 1 128 -320" stroke="black">
+336 704 m
+208 576 l
+</path>
+<path matrix="1 0 0 1 128 -320" stroke="black">
+336 736 m
+192 592 l
+</path>
+<path matrix="1 0 0 1 128 -320" stroke="black">
+336 768 m
+176 608 l
+</path>
+<path matrix="1 0 0 1 128 -320" stroke="black">
+320 784 m
+160 624 l
+</path>
+<path matrix="1 0 0 1 128 -320" stroke="black">
+144 640 m
+224 720 l
+224 720 l
+</path>
+<path matrix="1 0 0 1 128 -320" stroke="black">
+240 736 m
+304 800 l
+</path>
+<use matrix="1 0 0 1 32 32" name="mark/disk(sx)" pos="256 800" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 32" name="mark/disk(sx)" pos="256 768" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 32" name="mark/disk(sx)" pos="256 736" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 32" name="mark/disk(sx)" pos="256 704" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 32" name="mark/disk(sx)" pos="256 672" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 32" name="mark/disk(sx)" pos="256 640" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 32" name="mark/disk(sx)" pos="256 608" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 32" name="mark/disk(sx)" pos="256 576" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 32" name="mark/disk(sx)" pos="256 544" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 32" name="mark/disk(sx)" pos="256 512" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 32" name="mark/disk(sx)" pos="272 560" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 32" name="mark/disk(sx)" pos="288 576" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 32" name="mark/disk(sx)" pos="304 592" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 32" name="mark/disk(sx)" pos="320 608" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 32" name="mark/disk(sx)" pos="240 560" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 32" name="mark/disk(sx)" pos="224 576" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 32" name="mark/disk(sx)" pos="208 592" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 32" name="mark/disk(sx)" pos="192 608" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 32" name="mark/disk(sx)" pos="192 736" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 32" name="mark/disk(sx)" pos="192 704" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 32" name="mark/disk(sx)" pos="192 672" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 32" name="mark/disk(sx)" pos="192 640" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 32" name="mark/disk(sx)" pos="320 640" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 32" name="mark/disk(sx)" pos="320 672" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 32" name="mark/disk(sx)" pos="320 704" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 32" name="mark/disk(sx)" pos="320 736" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 32" name="mark/disk(sx)" pos="272 784" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 32" name="mark/disk(sx)" pos="240 784" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 32" name="mark/disk(sx)" pos="224 768" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 32" name="mark/disk(sx)" pos="288 768" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 32" name="mark/disk(sx)" pos="208 752" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 32" name="mark/disk(sx)" pos="240 752" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 32" name="mark/disk(sx)" pos="272 752" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 32" name="mark/disk(sx)" pos="304 752" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 32" name="mark/disk(sx)" pos="224 736" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 32" name="mark/disk(sx)" pos="288 736" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 32" name="mark/disk(sx)" pos="208 720" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 32" name="mark/disk(sx)" pos="240 720" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 32" name="mark/disk(sx)" pos="272 720" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 32" name="mark/disk(sx)" pos="304 720" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 32" name="mark/disk(sx)" pos="224 704" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 32" name="mark/disk(sx)" pos="288 704" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 32" name="mark/disk(sx)" pos="208 688" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 32" name="mark/disk(sx)" pos="240 688" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 32" name="mark/disk(sx)" pos="272 688" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 32" name="mark/disk(sx)" pos="304 688" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 32" name="mark/disk(sx)" pos="208 656" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 32" name="mark/disk(sx)" pos="208 624" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 32" name="mark/disk(sx)" pos="224 672" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 32" name="mark/disk(sx)" pos="224 640" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 32" name="mark/disk(sx)" pos="224 608" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 32" name="mark/disk(sx)" pos="240 656" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 32" name="mark/disk(sx)" pos="240 624" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 32" name="mark/disk(sx)" pos="240 592" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 32" name="mark/disk(sx)" pos="272 656" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 32" name="mark/disk(sx)" pos="272 624" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 32" name="mark/disk(sx)" pos="272 592" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 32" name="mark/disk(sx)" pos="288 672" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 32" name="mark/disk(sx)" pos="288 640" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 32" name="mark/disk(sx)" pos="288 608" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 32" name="mark/disk(sx)" pos="304 624" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 32" name="mark/disk(sx)" pos="304 656" size="normal" stroke="black"/>
+<path matrix="1 0 0 1 160 32" stroke="black">
+192 736 m
+64 608 l
+64 608 l
+</path>
+<path matrix="1 0 0 1 160 32" stroke="black">
+80 592 m
+192 704 l
+192 704 l
+</path>
+<path matrix="1 0 0 1 160 32" stroke="black">
+192 672 m
+96 576 l
+96 576 l
+</path>
+<path matrix="1 0 0 1 160 32" stroke="black">
+112 560 m
+192 640 l
+192 640 l
+</path>
+<path matrix="1 0 0 1 160 32" stroke="black">
+64 640 m
+144 560 l
+144 560 l
+</path>
+<path matrix="1 0 0 1 160 32" stroke="black">
+64 672 m
+160 576 l
+160 576 l
+</path>
+<path matrix="1 0 0 1 160 32" stroke="black">
+64 704 m
+176 592 l
+176 592 l
+</path>
+<path matrix="1 0 0 1 160 32" stroke="black">
+64 736 m
+192 608 l
+192 608 l
+</path>
+<use matrix="1 0 0 1 -112 400" name="mark/disk(sx)" pos="208 368" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -112 400" name="mark/disk(sx)" pos="224 352" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -112 400" name="mark/disk(sx)" pos="192 352" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -112 400" name="mark/disk(sx)" pos="208 336" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -112 400" name="mark/disk(sx)" pos="208 304" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -112 400" name="mark/disk(sx)" pos="224 320" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -112 400" name="mark/disk(sx)" pos="192 320" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -112 400" name="mark/disk(sx)" pos="176 336" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -112 400" name="mark/disk(sx)" pos="176 304" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -112 400" name="mark/disk(sx)" pos="192 288" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -112 400" name="mark/disk(sx)" pos="208 272" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -112 400" name="mark/disk(sx)" pos="224 288" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -112 400" name="mark/disk(sx)" pos="240 304" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -112 400" name="mark/disk(sx)" pos="240 336" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -112 400" name="mark/disk(sx)" pos="208 240" size="normal" stroke="black"/>
+<path matrix="1 0 0 1 -112 400" stroke="black">
+176 336 m
+208 368 l
+240 336 l
+240 304 l
+208 272 l
+208 240 l
+208 240 l
+</path>
+<path matrix="1 0 0 1 -112 400" stroke="black">
+176 336 m
+176 304 l
+208 272 l
+208 272 l
+</path>
+<path matrix="1 0 0 1 -112 400" stroke="black">
+176 336 m
+224 288 l
+</path>
+<path matrix="1 0 0 1 -112 400" stroke="black">
+192 352 m
+240 304 l
+</path>
+<path matrix="1 0 0 1 -112 400" stroke="black">
+208 368 m
+208 272 l
+</path>
+<path matrix="1 0 0 1 -112 400" stroke="black">
+224 352 m
+224 288 l
+</path>
+<path matrix="1 0 0 1 -112 400" stroke="black">
+192 352 m
+192 288 l
+</path>
+<path matrix="1 0 0 1 -112 400" stroke="black">
+224 352 m
+176 304 l
+</path>
+<path matrix="1 0 0 1 -112 400" stroke="black" cap="1">
+192 304 m
+192 304 l
+</path>
+<path matrix="1 0 0 1 -112 400" stroke="black">
+192 288 m
+240 336 l
+</path>
+<path matrix="1 0 0 1 -192 32" stroke="black">
+480 512 m
+480 544 l
+544 608 l
+544 736 l
+480 800 l
+416 736 l
+416 608 l
+480 544 l
+480 544 l
+</path>
+<path matrix="1 0 0 1 -192 32" stroke="black">
+432 752 m
+544 640 l
+</path>
+<path matrix="1 0 0 1 -192 32" stroke="black">
+448 768 m
+544 672 l
+</path>
+<path matrix="1 0 0 1 -192 32" stroke="black">
+464 784 m
+544 704 l
+</path>
+<path matrix="1 0 0 1 -192 32" stroke="black">
+528 752 m
+416 640 l
+</path>
+<path matrix="1 0 0 1 -192 32" stroke="black">
+416 672 m
+512 768 l
+</path>
+<path matrix="1 0 0 1 -192 32" stroke="black">
+496 784 m
+416 704 l
+</path>
+<path matrix="1 0 0 1 -192 32" stroke="black">
+480 800 m
+480 544 l
+</path>
+<path matrix="1 0 0 1 -192 32" stroke="black">
+512 768 m
+512 576 l
+</path>
+<path matrix="1 0 0 1 -192 32" stroke="black">
+496 784 m
+496 560 l
+</path>
+<path matrix="1 0 0 1 -192 32" stroke="black">
+528 752 m
+528 592 l
+</path>
+<path matrix="1 0 0 1 -192 32" stroke="black">
+464 784 m
+464 560 l
+</path>
+<path matrix="1 0 0 1 -192 32" stroke="black">
+448 768 m
+448 576 l
+</path>
+<path matrix="1 0 0 1 -192 32" stroke="black">
+432 752 m
+432 592 l
+</path>
+<use matrix="1 0 0 1 400 0" name="mark/disk(sx)" pos="80 512" size="normal" stroke="green"/>
+<use matrix="1 0 0 1 400 0" name="mark/disk(sx)" pos="80 512" size="normal" stroke="green"/>
+<use matrix="1 0 0 1 -192 32" name="mark/disk(sx)" pos="480 512" size="normal" stroke="green"/>
+<use matrix="1 0 0 1 -112 400" name="mark/disk(sx)" pos="208 240" size="normal" stroke="green"/>
+<use matrix="1 0 0 1 -16 64" name="mark/disk(sx)" pos="432 80" size="normal" stroke="green"/>
+<text matrix="1 0 0 1 416 -16" transformations="translations" pos="0 560" stroke="seagreen" type="label" width="53.439" height="6.926" depth="1.93" valign="baseline">Bigger Leaf
+</text>
+<text matrix="1 0 0 1 -208 32" transformations="translations" pos="512 544" stroke="seagreen" type="label" width="52.166" height="6.918" depth="0" valign="baseline">Middle Leaf</text>
+<text matrix="1 0 0 1 -112 400" transformations="translations" pos="192 224" stroke="seagreen" type="label" width="49.675" height="6.918" depth="0" valign="baseline">Small Leaf
+</text>
+<text matrix="1 0 0 1 0 304" transformations="translations" pos="480 128" stroke="seagreen" type="label" width="30.165" height="6.926" depth="1.93" valign="baseline">Maple
+</text>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="448 688" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="448 704" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="448 720" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="448 736" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="448 752" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="448 768" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="448 784" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="440 776" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="432 784" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="424 792" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="416 800" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="408 808" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="400 800" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="392 792" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="384 784" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="376 776" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="368 768" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="360 760" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="360 744" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="360 728" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="360 712" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="360 696" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="360 680" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="360 664" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="360 648" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="360 632" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="360 616" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="360 600" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="360 584" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="368 576" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="376 568" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="384 560" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="392 552" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="400 544" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="408 536" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="416 528" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="424 520" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="432 512" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="440 504" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="448 496" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="456 504" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="464 512" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="472 520" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="480 528" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="488 536" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="496 544" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="504 552" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="512 560" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="520 568" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="528 576" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="536 584" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="456 792" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="464 800" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="464 816" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="472 824" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="480 832" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="488 824" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="496 816" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="504 808" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="512 800" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="520 792" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="528 784" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="536 776" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="536 760" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="544 752" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="544 736" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="544 720" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="544 704" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="544 688" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="544 672" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="544 656" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="544 640" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="544 624" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="544 608" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="544 592" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="408 792" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="400 784" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="408 776" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="416 784" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="424 776" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="392 776" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="384 768" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="400 768" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="416 768" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="432 768" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="480 816" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="472 808" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="488 808" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="480 800" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="496 800" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="472 792" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="488 792" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="504 792" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="464 784" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="480 784" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="496 784" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="512 784" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="520 776" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="504 776" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="488 776" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="472 776" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="456 776" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="464 768" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="480 768" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="496 768" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="512 768" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="528 768" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="456 760" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="472 760" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="488 760" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="504 760" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="520 760" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="528 752" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="536 744" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="512 752" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="496 752" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="480 752" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="464 752" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="456 744" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="472 744" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="488 744" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="504 744" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="520 744" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="528 736" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="536 728" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="512 736" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="496 736" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="480 736" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="464 736" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="456 728" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="472 728" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="488 728" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="504 728" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="520 728" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="528 720" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="536 712" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="512 720" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="440 760" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="424 760" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="408 760" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="392 760" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="376 760" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="368 752" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="384 752" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="400 752" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="416 752" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="432 752" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="440 744" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="424 744" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="408 744" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="392 744" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="376 744" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="368 736" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="384 736" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="400 736" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="416 736" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="432 736" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="440 728" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="424 728" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="408 728" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="392 728" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="376 728" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="368 720" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="384 720" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="400 720" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="416 720" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="432 720" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="464 720" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="480 720" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="496 720" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="520 712" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="504 712" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="488 712" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="472 712" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="456 712" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="440 712" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="424 712" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="408 712" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="392 712" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="376 712" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="368 704" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="384 704" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="400 704" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="416 704" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="432 704" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="464 704" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="480 704" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="496 704" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="512 704" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="528 704" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="536 696" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="520 696" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="504 696" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="488 696" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="472 696" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="456 696" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="440 696" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="424 696" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="408 696" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="392 696" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="376 696" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="368 688" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="384 688" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="400 688" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="416 688" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="432 688" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="464 688" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="480 688" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="496 688" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="512 688" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="528 688" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="376 680" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="392 680" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="408 680" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="424 680" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="440 680" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="456 680" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="472 680" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="488 680" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="504 680" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="520 680" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="536 680" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="368 672" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="384 672" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="400 672" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="416 672" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="432 672" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="464 672" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="480 672" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="496 672" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="512 672" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="528 672" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="376 664" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="392 664" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="408 664" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="424 664" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="440 664" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="456 664" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="472 664" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="488 664" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="504 664" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="520 664" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="536 664" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="368 656" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="384 656" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="400 656" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="416 656" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="432 656" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="448 656" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="464 656" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="480 656" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="496 656" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="512 656" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="528 656" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="376 648" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="392 648" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="408 648" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="424 648" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="440 648" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="456 648" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="472 648" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="488 648" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="504 648" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="368 640" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="384 640" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="400 640" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="416 640" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="432 640" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="448 640" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="464 640" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="480 640" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="496 640" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="512 640" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="520 648" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="528 640" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="536 648" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="376 632" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="392 632" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="408 632" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="424 632" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="440 632" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="456 632" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="472 632" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="488 632" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="504 632" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="520 632" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="536 632" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="368 624" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="384 624" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="400 624" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="416 624" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="432 624" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="448 624" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="464 624" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="480 624" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="496 624" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="512 624" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="528 624" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="536 616" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="520 616" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="504 616" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="488 616" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="472 616" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="456 616" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="440 616" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="424 616" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="408 616" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="392 616" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="376 616" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="368 608" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="384 608" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="400 608" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="416 608" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="432 608" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="448 608" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="464 608" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="480 608" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="496 608" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="512 608" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="528 608" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="536 600" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="520 600" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="504 600" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="488 600" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="472 600" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="456 600" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="440 600" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="424 600" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="408 600" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="392 600" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="376 600" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="368 592" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="384 592" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="400 592" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="416 592" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="432 592" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="448 592" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="464 592" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="480 592" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="496 592" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="512 592" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="528 592" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="376 584" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="392 584" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="408 584" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="424 584" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="440 584" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="456 584" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="472 584" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="488 584" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="504 584" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="520 584" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="384 576" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="400 576" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="416 576" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="432 576" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="448 576" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="464 576" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="480 576" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="496 576" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="512 576" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="392 568" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="408 568" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="424 568" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="440 568" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="456 568" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="472 568" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="488 568" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="504 568" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="400 560" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="416 560" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="432 560" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="448 560" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="464 560" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="480 560" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="496 560" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="488 552" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="472 552" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="456 552" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="440 552" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="424 552" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="408 552" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="416 544" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="432 544" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="448 544" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="464 544" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="480 544" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="472 536" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="456 536" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="440 536" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="424 536" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="432 528" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="448 528" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="464 528" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="440 520" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="456 520" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -328 -344" name="mark/disk(sx)" pos="448 512" size="normal" stroke="black"/>
+<path matrix="1 0 0 1 -328 -344" stroke="black">
+440 776 m
+464 800 l
+</path>
+<path matrix="1 0 0 1 -328 -344" stroke="black">
+464 800 m
+464 816 l
+480 832 l
+536 776 l
+536 760 l
+544 752 l
+544 592 l
+448 496 l
+360 584 l
+360 760 l
+408 808 l
+440 776 l
+440 504 l
+</path>
+<path matrix="1 0 0 1 -328 -344" stroke="black">
+472 824 m
+536 760 l
+</path>
+<path matrix="1 0 0 1 -328 -344" stroke="black">
+464 816 m
+544 736 l
+</path>
+<path matrix="1 0 0 1 -328 -344" stroke="black">
+464 800 m
+544 720 l
+</path>
+<path matrix="1 0 0 1 -328 -344" stroke="black">
+456 792 m
+544 704 l
+</path>
+<path matrix="1 0 0 1 -328 -344" stroke="black">
+448 784 m
+544 688 l
+</path>
+<path matrix="1 0 0 1 -328 -344" stroke="black">
+440 776 m
+544 672 l
+</path>
+<path matrix="1 0 0 1 -328 -344" stroke="black">
+400 800 m
+544 656 l
+</path>
+<path matrix="1 0 0 1 -328 -344" stroke="black">
+392 792 m
+544 640 l
+</path>
+<path matrix="1 0 0 1 -328 -344" stroke="black">
+384 784 m
+544 624 l
+544 624 l
+</path>
+<path matrix="1 0 0 1 -328 -344" stroke="black">
+376 776 m
+544 608 l
+</path>
+<path matrix="1 0 0 1 -328 -344" stroke="black">
+368 768 m
+544 592 l
+</path>
+<path matrix="1 0 0 1 -328 -344" stroke="black">
+360 760 m
+536 584 l
+</path>
+<path matrix="1 0 0 1 -328 -344" stroke="black">
+360 744 m
+528 576 l
+</path>
+<path matrix="1 0 0 1 -328 -344" stroke="black">
+360 728 m
+520 568 l
+</path>
+<path matrix="1 0 0 1 -328 -344" stroke="black">
+360 712 m
+512 560 l
+</path>
+<path matrix="1 0 0 1 -328 -344" stroke="black">
+360 696 m
+504 552 l
+</path>
+<path matrix="1 0 0 1 -328 -344" stroke="black">
+360 680 m
+496 544 l
+</path>
+<path matrix="1 0 0 1 -328 -344" stroke="black">
+360 664 m
+488 536 l
+</path>
+<path matrix="1 0 0 1 -328 -344" stroke="black">
+360 648 m
+480 528 l
+</path>
+<path matrix="1 0 0 1 -328 -344" stroke="black" cap="1">
+360 624 m
+360 624 l
+</path>
+<path matrix="1 0 0 1 -328 -344" stroke="black">
+360 632 m
+472 520 l
+</path>
+<path matrix="1 0 0 1 -328 -344" stroke="black">
+360 616 m
+464 512 l
+</path>
+<path matrix="1 0 0 1 -328 -344" stroke="black">
+360 600 m
+456 504 l
+</path>
+<path matrix="1 0 0 1 -328 -344" stroke="black">
+440 504 m
+544 608 l
+</path>
+<path matrix="1 0 0 1 -328 -344" stroke="black">
+432 512 m
+544 624 l
+</path>
+<path matrix="1 0 0 1 -328 -344" stroke="black">
+424 520 m
+544 640 l
+</path>
+<path matrix="1 0 0 1 -328 -344" stroke="black">
+416 528 m
+544 656 l
+</path>
+<path matrix="1 0 0 1 -328 -344" stroke="black">
+408 536 m
+544 672 l
+</path>
+<path matrix="1 0 0 1 -328 -344" stroke="black">
+400 544 m
+544 688 l
+</path>
+<path matrix="1 0 0 1 -328 -344" stroke="black">
+392 552 m
+544 704 l
+</path>
+<path matrix="1 0 0 1 -328 -344" stroke="black">
+544 720 m
+384 560 l
+384 560 l
+</path>
+<path matrix="1 0 0 1 -328 -344" stroke="black">
+376 568 m
+544 736 l
+</path>
+<path matrix="1 0 0 1 -328 -344" stroke="black">
+544 752 m
+368 576 l
+</path>
+<path matrix="1 0 0 1 -328 -344" stroke="black">
+360 584 m
+536 760 l
+</path>
+<path matrix="1 0 0 1 -328 -344" stroke="black">
+536 776 m
+360 600 l
+</path>
+<path matrix="1 0 0 1 -328 -344" stroke="black">
+360 616 m
+528 784 l
+</path>
+<path matrix="1 0 0 1 -328 -344" stroke="black">
+520 792 m
+360 632 l
+</path>
+<path matrix="1 0 0 1 -328 -344" stroke="black">
+360 648 m
+512 800 l
+</path>
+<path matrix="1 0 0 1 -328 -344" stroke="black">
+504 808 m
+360 664 l
+</path>
+<path matrix="1 0 0 1 -328 -344" stroke="black">
+360 680 m
+496 816 l
+</path>
+<path matrix="1 0 0 1 -328 -344" stroke="black">
+488 824 m
+464 800 l
+</path>
+<path matrix="1 0 0 1 -328 -344" stroke="black">
+440 776 m
+360 696 l
+</path>
+<path matrix="1 0 0 1 -328 -344" stroke="black">
+360 712 m
+432 784 l
+</path>
+<path matrix="1 0 0 1 -328 -344" stroke="black">
+424 792 m
+360 728 l
+</path>
+<path matrix="1 0 0 1 -328 -344" stroke="black" cap="1">
+360 752 m
+360 752 l
+</path>
+<path matrix="1 0 0 1 -328 -344" stroke="black">
+360 744 m
+416 800 l
+</path>
+<path matrix="1 0 0 1 -328 -344" stroke="black">
+408 808 m
+408 536 l
+</path>
+<path matrix="1 0 0 1 -328 -344" stroke="black">
+416 800 m
+416 528 l
+</path>
+<path matrix="1 0 0 1 -328 -344" stroke="black">
+424 792 m
+424 520 l
+</path>
+<path matrix="1 0 0 1 -328 -344" stroke="black">
+432 784 m
+432 512 l
+</path>
+<path matrix="1 0 0 1 -328 -344" stroke="black">
+400 800 m
+400 544 l
+</path>
+<path matrix="1 0 0 1 -328 -344" stroke="black">
+392 792 m
+392 552 l
+</path>
+<path matrix="1 0 0 1 -328 -344" stroke="black">
+384 784 m
+384 560 l
+</path>
+<path matrix="1 0 0 1 -328 -344" stroke="black">
+376 776 m
+376 568 l
+</path>
+<path matrix="1 0 0 1 -328 -344" stroke="black">
+368 768 m
+368 576 l
+</path>
+<path matrix="1 0 0 1 -328 -344" stroke="black">
+448 496 m
+448 784 l
+</path>
+<path matrix="1 0 0 1 -328 -344" stroke="black">
+456 792 m
+456 504 l
+</path>
+<path matrix="1 0 0 1 -328 -344" stroke="black">
+464 800 m
+464 512 l
+</path>
+<path matrix="1 0 0 1 -328 -344" stroke="black">
+472 824 m
+472 520 l
+</path>
+<path matrix="1 0 0 1 -328 -344" stroke="black">
+480 832 m
+480 528 l
+</path>
+<path matrix="1 0 0 1 -328 -344" stroke="black">
+488 824 m
+488 536 l
+</path>
+<path matrix="1 0 0 1 -328 -344" stroke="black">
+496 816 m
+496 544 l
+</path>
+<path matrix="1 0 0 1 -328 -344" stroke="black">
+504 808 m
+504 552 l
+</path>
+<path matrix="1 0 0 1 -328 -344" stroke="black">
+512 800 m
+512 560 l
+</path>
+<path matrix="1 0 0 1 -328 -344" stroke="black">
+520 792 m
+520 568 l
+</path>
+<path matrix="1 0 0 1 -328 -344" stroke="black">
+528 784 m
+528 576 l
+</path>
+<path matrix="1 0 0 1 -328 -344" stroke="black">
+536 760 m
+536 584 l
+</path>
+<group matrix="1 0 0 1 -176 -320">
+<use matrix="1 0 0 1 -152 -24" name="mark/disk(sx)" pos="448 672" size="normal" stroke="green"/>
+</group>
+<text matrix="1 0 0 1 112 -432" transformations="translations" pos="0 560" stroke="seagreen" type="label" valign="baseline">Asymmetric</text>
+</page>
+</ipe>
diff --git a/Latex/bilder/find_minimal_separator_illustration-eps-converted-to.pdf b/Latex/bilder/find_minimal_separator_illustration-eps-converted-to.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..0a5ba707f932d3d2746f6d52e3457d38730acf2f
Binary files /dev/null and b/Latex/bilder/find_minimal_separator_illustration-eps-converted-to.pdf differ
diff --git a/Latex/bilder/graphs_illustration-eps-converted-to.pdf b/Latex/bilder/graphs_illustration-eps-converted-to.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..dab352287f64d651edd3036de6108a161c9ef1f7
Binary files /dev/null and b/Latex/bilder/graphs_illustration-eps-converted-to.pdf differ
diff --git a/Latex/bilder/graphs_illustration.eps b/Latex/bilder/graphs_illustration.eps
new file mode 100644
index 0000000000000000000000000000000000000000..473fe4898e7437268510b2cc88d0e52f430dc73b
--- /dev/null
+++ b/Latex/bilder/graphs_illustration.eps
@@ -0,0 +1,2615 @@
+%!PS-Adobe-3.0 EPSF-3.0
+%%Creator: cairo 1.15.10 (http://cairographics.org)
+%%CreationDate: Tue Aug  4 00:42:50 2020
+%%Pages: 1
+%%DocumentData: Clean7Bit
+%%LanguageLevel: 2
+%%BoundingBox: 30 125 562 834
+%%EndComments
+%%BeginProlog
+50 dict begin
+/q { gsave } bind def
+/Q { grestore } bind def
+/cm { 6 array astore concat } bind def
+/w { setlinewidth } bind def
+/J { setlinecap } bind def
+/j { setlinejoin } bind def
+/M { setmiterlimit } bind def
+/d { setdash } bind def
+/m { moveto } bind def
+/l { lineto } bind def
+/c { curveto } bind def
+/h { closepath } bind def
+/re { exch dup neg 3 1 roll 5 3 roll moveto 0 rlineto
+      0 exch rlineto 0 rlineto closepath } bind def
+/S { stroke } bind def
+/f { fill } bind def
+/f* { eofill } bind def
+/n { newpath } bind def
+/W { clip } bind def
+/W* { eoclip } bind def
+/BT { } bind def
+/ET { } bind def
+/BDC { mark 3 1 roll /BDC pdfmark } bind def
+/EMC { mark /EMC pdfmark } bind def
+/cairo_store_point { /cairo_point_y exch def /cairo_point_x exch def } def
+/Tj { show currentpoint cairo_store_point } bind def
+/TJ {
+  {
+    dup
+    type /stringtype eq
+    { show } { -0.001 mul 0 cairo_font_matrix dtransform rmoveto } ifelse
+  } forall
+  currentpoint cairo_store_point
+} bind def
+/cairo_selectfont { cairo_font_matrix aload pop pop pop 0 0 6 array astore
+    cairo_font exch selectfont cairo_point_x cairo_point_y moveto } bind def
+/Tf { pop /cairo_font exch def /cairo_font_matrix where
+      { pop cairo_selectfont } if } bind def
+/Td { matrix translate cairo_font_matrix matrix concatmatrix dup
+      /cairo_font_matrix exch def dup 4 get exch 5 get cairo_store_point
+      /cairo_font where { pop cairo_selectfont } if } bind def
+/Tm { 2 copy 8 2 roll 6 array astore /cairo_font_matrix exch def
+      cairo_store_point /cairo_font where { pop cairo_selectfont } if } bind def
+/g { setgray } bind def
+/rg { setrgbcolor } bind def
+/d1 { setcachedevice } bind def
+/cairo_data_source {
+  CairoDataIndex CairoData length lt
+    { CairoData CairoDataIndex get /CairoDataIndex CairoDataIndex 1 add def }
+    { () } ifelse
+} def
+/cairo_flush_ascii85_file { cairo_ascii85_file status { cairo_ascii85_file flushfile } if } def
+/cairo_image { image cairo_flush_ascii85_file } def
+/cairo_imagemask { imagemask cairo_flush_ascii85_file } def
+%%EndProlog
+%%BeginSetup
+%%BeginResource: font CMR10
+%!PS-AdobeFont-1.0: CMR10 003.002
+%%Title: CMR10
+%Version: 003.002
+%%CreationDate: Mon Jul 13 16:17:00 2009
+%%Creator: David M. Jones
+%Copyright: Copyright (c) 1997, 2009 American Mathematical Society
+%Copyright: (<http://www.ams.org>), with Reserved Font Name CMR10.
+% This Font Software is licensed under the SIL Open Font License, Version 1.1.
+% This license is in the accompanying file OFL.txt, and is also
+% available with a FAQ at: http://scripts.sil.org/OFL.
+%%EndComments
+                                                                                                                                                                             
+11 dict begin
+/FontType 1 def
+/FontMatrix [0.001 0 0 0.001 0 0 ]readonly def
+/FontName /f-0-0 def
+/FontBBox {-40 -250 1009 750 }readonly def
+/PaintType 0 def
+/FontInfo 9 dict dup begin
+/version (003.002) readonly def
+/Notice (Copyright \050c\051 1997, 2009 American Mathematical Society \050<http://www.ams.org>\051, with Reserved Font Name CMR10.) readonly def
+/FullName (CMR10) readonly def
+/FamilyName (Computer Modern) readonly def
+/Weight (Medium) readonly def
+/ItalicAngle 0 def
+/isFixedPitch false def
+/UnderlinePosition -100 def
+/UnderlineThickness 50 def
+end readonly def
+/Encoding 256 array
+0 1 255 {1 index exch /.notdef put} for
+dup 65 /A put
+dup 66 /B put
+dup 76 /L put
+dup 77 /M put
+dup 83 /S put
+dup 97 /a put
+dup 99 /c put
+dup 100 /d put
+dup 101 /e put
+dup 102 /f put
+dup 103 /g put
+dup 105 /i put
+dup 108 /l put
+dup 109 /m put
+dup 112 /p put
+dup 114 /r put
+dup 115 /s put
+dup 116 /t put
+dup 121 /y put
+readonly def
+currentdict end
+currentfile eexec
+f983ef0097ece61cf3a79690d73bfb4b0027b78229ecae63571dca5d489f77bdeee69161ac65b8
+1a171acfec6a38e69dd162ea7d456fbeadb28c016db3bfa3a91b731dd3d89e31936de5e0ebbee4
+d9bf15a1d35b3bfa43ade27c55337a53e8117722f41ae71510be6095ec8fcc4480cf4d4b3c8a65
+dec16f24a875f2c200388e757c8d066a3bd39db828e62e2d3d19908b221b8f5b58f7a6a2ebb901
+d705aee915d9f92114c59f6a9124885e77bd754ad8dacd1e7fa44ef6a4733c0ef482d5f4f7788b
+0d58fe7cceea728243b0a6d07c975363fe2f68dc120d39bc1437b4ac6e91b4f1adcd675ae140b6
+f59a96ca858bbd5c861ee4d4da5cd8c0810bbf81fb77d72f04692826e26e06411cd5bf235072b9
+a22bff0b022257caea6b35a80f6584f84fb25d2b12b487b122a82e32ffef3260f9ade779b4795d
+3c56adfeb29c4e258b2d9f9a28e54efd9bb6a98778a6cc09348657ae5c4f1cbd6a6657b6960225
+2e89f0dc72dc41fa2151c8680593116af44bb56979d80ae7eb28ed92dd5211a953ef3956453d15
+90fb10f8f053d924da5eedf7ba9ae7eef8e88adc91b40f9aa66111521e97affc76678b95a94c1b
+10498274d41eb5dce6c800cfc2b1daaded801c27fd5b57ddf20a4e7acceb6ec82bdcc67f5ec5b6
+9221de716f66d38f37d936a4379b1ef049d22ff23aeaea253f840f67cde55a9c0449f09f5c0144
+ebd1be42eb4dc7654dea77f4821c36b37e6367f23bfd70288ebc289858ae641a75597dc3453bed
+fea0eb27f30b6dfd61e07ec4ab199fea4c2f59d6f6b04bf3f8356318f0ed8e1e663838237ef143
+fee4ccc3540ea39b05197d2d9c149a2a71569b89e3526966b4860666d7394635cec4328c5e453a
+59e314fb4aee07dd60c6ce98b1c7e0fa4983414f17c728d92a27a7c1402b6bc51e3a9474e312be
+1e6d5b802895af8e46ae6dfe64ff5e41bc52a3648091f713c7f4021c9ee000cbfd06faae97bae0
+55c337de33c9cd0c6f45c4918db239e6e63d795f44b9d097118d083b6d6ebe2062308845affa58
+d04bfccbfa3d1f3b4d086f1e362357eda652158996fb06cf39ebc15946fd58e6040e2150803bb9
+d9156133cec43034651f6a759639393fe2cc6d608730180c4ff6fe77346eda3b4b747bdddcd33a
+9c81236a22c18964c1a3dc6b47a384cf48f9dcda4481ac84ee0234b1825028609526349bd3bebd
+3275055bdb3d52e2595512a9d803f68a9237ef9f933f367f4cf21bc4aa61ae6222051ca394db85
+b9bcd0c78e7cff1b38db843b76e9eb828fdefef5790cd372d971e5bb8ab00df0cc66afb0fc526d
+9e6a4d1bceaf99078466dbcc1d96c22b022ee2b84ec839a896acfbc1baf7cbdbc883b8dcd3368d
+579e95d20124d58a0d8e896eaa9ca2dcd4d3f084aa237af69c9a958ae0129ed065740b556cbbd6
+7695d32b1ac85b0f26bb974bd8468f058a619486ce6fc45b074a6541d409eb725ff3af49d5ae3b
+d896d1d6bd78746535a61e265056b9dca3c637dbf690b539ec8fe181acf0ec5edced82868355e0
+8d64edd445413bf367c817170006d3dcc6a9a7288531311a44035d457837b97044fb3beda4503e
+e5820e5532bb9304e8c83201f9c46a1d6739b2da74d046a75a60ca064cafe82168bd87e88005cf
+a68f9db5faf2f75f0d7bfdba7ccedf205bb6c7361a62e619af888a9e753f1522d7094e5a9bc206
+cbce76f0b6a1d85a2b93789aa0cb3105e43acaf226d61764d6962dbb1ecb372fc27ab8e79763d8
+3df97805bc70614355bdc853942f8f4d271b54b3c475b27d7f5985dd84b14c22480a6b156b9a81
+2adc8ec155bf922fba301815ac958e68109c186984b28592719e1579e7510fc5b0429b577f83b8
+aa4e11a93291dcd14a1ff76cc5e54de58ae4b399f086c0c8283d938d5f4254f37e43aac99f49cf
+259036817690e55f09e8c20ee7e627cd38a0ca9d7a574a816238478497dffedb41bc0a56b7eba0
+9b58a4d8d5711b931598873b73f54a94cb7db62a78b590a189c0b83d7bcc665ae203d5669c721b
+b4c34ba9b85388afde9502da1ad77994941dfb0c8d9673fe3801ed7b646a3f7b86c87e2a5234b0
+2507e05189732e574b7f2294b59c2945666bca518a71b9b5c34f823217326b827cb5c75195caf9
+b93dfff259bf3e0ca4b2c6bee5860851ea5ecef377689a76b98c4e81e8f17067f47439f0fc5194
+d5a0a1959d1e71c88eed68a2b915e56b38c00507921917cb41bcdfcbb6e041d80b1e06a41e974c
+ae2bed5381d03bb4e1f2117d109277de28efe7bebcca40d687561b073614d885440c9130c12643
+1c95e73f4c7a9d2c9ea5a86e1f9ace968bd2db67c0900ecf65dfe8eddd61a11c285867c06a4557
+ed0ad36fce2e0192435bece4fd8d7cfc355c6c019ca83dc0c9290e10d0f166ff639ee6fdef87ad
+b19fdf0215f52da1ed5eb65876fb24c0ded82ec96814c0f8afbc1db375051bdabae230a873df8b
+5b55e6c006e6f7b6334287820ba8f20d65b01155c9032d6393ea04d967e4106ee05423610be003
+033e86cc7f177df3e49dc911d5cad22495e430ee44d9fa74960ce44ff6867327dd3985c0f7f456
+b049bbe721f07a2eb9149a44f06086ff1391a6e2bd4a5278ff89beed802bab6f81a8d4c25f1759
+7beafb760a318ea610b5f145274a2b3aa611858529712d404991ea274f2270452da3b68d891699
+43ba7686e3019263133290796975cb035b2e6169b8621e7136990ab699d1c89fa0e94551191523
+fd1a69cda50cf8aded596f56dfa218cccc84acda3226a0451e87ff0e44fe54f52b37a59220fb13
+5473a469ea525805de37d223c18319139185b97fc2ea83356ef7799081d1e2a97d89f977de1458
+9ca8446cd692fdf2419459618475c952f389db09c0749798af8397ac3e11d4e7302e39ac34ca03
+df273851301a1ae9b226e84fe2e0b65131299516bd64aa90efe39f280591af10c90b652ae14e80
+cc1201b4109629558e83b83483d4dd57e0857ae0dfcd5a64b5cc36c1f28ddc752ac1d1bcfde5f5
+b1511a3e6b30d835186f38e35215a328d396db7c634aad187428b23f68d013bd6b8ac2d7ff93a1
+d399c360245641c2200021b9f8dd69304f74616ea2dda34144fc11ec42b09af21134c2c7fbf153
+4abd44083021d4ba466e732a1fab596e9f6afd4874ceefad852697601ad8f15aa5d59e20c11e25
+b8fcf60d6138d6e72a8f4cf154c97bf5990595c479ba3a2f96dd65396d54a42b209ca55d3eb21c
+be6c44f0780d2c43fcddddea5a65ee645aacbef909a155b55247a4dbd5d59e7d0fc8c20a219344
+312a1d86cb69662d2c7cf928f6d817ba34ff554890aef5afe8b01db6537b9725b88cff02db92e7
+87b593a6491f930eda75143528147e0341763f3f8b9794a0dee7a4889530c765a8e665f58c9334
+0c99a098250ef663f3158ea3e6dccfef4212909a5c5c23e2d61189d23d69e8bc366c947019c230
+5017afc9d36c6e8c560efaa4093c944a4457698c5f5de74374ffdd24cb5e6d24a04b531793be80
+2d5ae400e2b068a62252c678f4547fba7c677e634cc76a0373124d65ce68dd5d085841569a2f8e
+9c9b71ed1b3794e6f899d6f3cf7b6eee7f33a285abc190b8f17454b084c8a83a7c64cb899733eb
+e3ea8d710bf15470c8699b265b4d3714870776f16ae4a5402c0a40070a16114298a51c1646f6cd
+e88114626af0e4cae0ff7384d863891521eac6f31a5cd295cc0c0e7d59de52de04bf5238156f4c
+e33cd4897cc482ae5ad1826628529ce5a6a5e6a55aca0b20b657cdf5e57c5a73f96f93622c6cf5
+00bcd7e6922bc3ca96bba05fea0b0ff7ddcac109be83fa8934851e9be9bd3109192202eab1c77b
+0c86d1ff97e3b8732fdbb9eecd2a547e3a1cc4402d8f1d213c98890afb12ce908ea3cec9d2e7b5
+bce47c25c32ef337c45f3ee522f5cc76d1505ded96156f80bf6c8e2cf5c3f28898c2f7cedcad10
+f6dc5c45ff4979906b2fd4db0d9435bd85ff5b78e78e441d140ab53db156f4c6402f716ed7ab7c
+5617ae1d1a22bfa5bbc89dddcf9f14feb699d206e1345b793185d2907babe65547a9a17f8b0ce7
+18d98db6039357616cc44be309ec11368ac4d965927773cdaf50ed2d48e692b2a3b31521bad488
+bf684f01e3506733b27eddbb5d0d6d3d8e65a5e1bc745e1eec0547984018419179b38d42e30997
+94341d97885f230300ec6fa06b18c17a1fa77dc186886492d150df1440db4efae287f2f2a4ecbc
+f0683eedea3f78b1b68fc1911cbf2625185f73c141dbc9674e7affff580b4a0296073f5b6505e4
+d63a4a736bc3b794809e801860ce4691a57eb02c0947efc1de4bed3962346769c613f240db1574
+368b28f186b608bb99da33ae1b3c266e49d58ae67a462fcf2e6bfed1ac1ffcc24c9752ea793f60
+923f7579d2b8ef9860975e6a80d5f9637d594a9567f8a2d1e15ccb1edd3d502972c969ee42f57d
+74500d30170904a463d659af0d96ee6fed9f4c7fa0c7800ebb2ed3b78c3f095d18068f96573a03
+3ef343c07bca94dd9897af2830b6a40086c1e8945b26f8baedb8c0af3371060ce18cf8d8693738
+c15c2eb95a4f7f7a37e82abff54ce8d19524e45379c92bee3ae74131231fb175d96fbe54274a88
+135fc74d9f429b9794912a8d157c0ce5045f3b16a4bc78811f1007c96eaef9bbd706533a7ad804
+11e4a3adb0bdbc27a94632d00a5a561df53e0c63a0c17d9df09ada247b420b524135e9e7c34699
+8993f716f41a8601099fb2cbad6f760245a1b52e1f8c45fb5379021a64ee55e368f1e2d704bc41
+76d8e1a1f034a631aa520c6039639207386175c7913af1aeeb95f1c6f995387a454c25e6f78af6
+0ec1d34e0fa0bb4bb8b9417b5d8c59d31bbd89cebd28c490d8436128eaa23c69816af90a4622b8
+2a030514aa5eb2865f5fc5247dbfef5be641da1448376de08544b9902118a5259175d547a87932
+6510c732848d4e5d6d4569021cffaf8be720fc9b73df8a0b8be87eb08c3a2cdeb28d6acc63694c
+a9cbd263838f26a9f538d85fa00cb23f053094977019ff9a935d627668bf9e94eac831d09da176
+27b4a4f4b6a790273ec536a5d8f66f478bbacaf17382f7a3e9257e554ed267eb03cd70b80359ae
+7667c44c0c9411a2ee41a9b0a6a12418a37e6e814069df72d0534d6bd5631f158a3fed39fe33e4
+d97f5b8d0133f8d67b92c72466cb2b82def502a67fa8a37ea4473056da8b1a1c589960957b0e1f
+e2316dabbb150f8f8be2c4da45e4014cdbb22df11a9fa8b85278ac7f0a6f75996a7eba0e524eda
+ab6ca54ec3b3dade7c9edd4ac5eba9087cfd542cdccdb9410202ea1c5dfd4abfc5c0e1c0ec8224
+6a93f453389bdef4fe8a94f9aa5b492ae04400c73f55f67ad0b02f092d87e10bc9f14ad36c3e8c
+c6519bd9ac63f795a51f61a9877cc56e8d87e1078a1562332869ec5d52bc95be2923ce6e9ab07c
+7b9ce0382a5afc60a44693aa58cfd33baa0415f5c8afc239125af4452c3a0010fef23c70df02d5
+d1fee6d23fcbd6b59137ef773e877df1e42eccd49373383b53556929650002a51973c5cb12eb66
+96f8d09086c7a0818b7372d1d17fea577704df4eaa121e0271b9459d57e1fd89a3db3d4c75c620
+79c3cadf03ef97d04c5a4cc5e608ef1599afb139ad7fe73fda41b81dc0cd9fbf93834f9ba7fb12
+38e895e9da72f1bbb8ff581c45a14a39981170d15d4e04022a9aa5a2aef9f6d38d68df4bff98a3
+71296a4e9ebdd2feb5bb616bde6c9a4647901613239b815ded225e3408799fa2f73d7be239cf11
+494c456dcdb4d618d21d19d81879bfacb55ef117fdfdd0d5f66bc97fbd7c6aeffc84d196359698
+e9f36512d6cc42775d1adabf6c99b4f4a232579106d27801f76a71f0770168e40a85403af26be1
+4ba533ec0551c3b18ea8ee97c57f9faeb4192419978ee50242ad61347104fab8f4260f518922ae
+10276c55fd46ea3d4f6471207910d77c8db13e391124b50453b60fbb4e4f15855fa03ac4c3a5e0
+f6cdb7995b1118bc4c9bd2f869682bfb9be20d917cf997d4c2000abd5e11e2dbd79c9c8b7685a1
+7943a2de2ac4cc60a50cafb37baf863aa8b8350d7dbb1b52c2d3652745ce06b1193d2785073f5c
+668c4a117d268d839d41e497165a50d08c3292fbd174411692a3b744da54986d1ef767d6bea6a5
+f437e5fb61f7581c72fa8df1f51909443be412c321c9e1fd626b345b705dc4a8017eb0d8cb61cf
+e5f3f80f796bba6fc7502bb925a33915953141c4444698a18663eeb95e492f20542eef84b047ac
+52a439bc794ccd488ee9b25bc467ed09a418256bc0c14a808f007231fbf97efc1881425ddb64fd
+6c170debd330257427c9d8b53dbde875aec06196cb8f0d33bf10b681605a02e750feadb3196bb3
+ec2c251e5f549c2fb6c91fb32c1bba3c9af6ce30cb6b71cc2ba681231b1b521619b863addda93f
+bae29f8c7a439415d22bb35f59608609cd13d22612cbc6aeb6601b37a6c9f09eb1eb8f60f12134
+956e456db374fdd7a93302dc2fa405641d09fe7c28314b08e4fc9de9294b2caacb8f8673647ea3
+2571bd33996045e3a3a6ebd1315c3c0c91fce65dbba1d1dc730bfbf02a1d5b16c74a8e5841450a
+24fb0d87108469267cd21aea77cdd8b317629be24dca7fbaabd757acf62f5733cde3c4f6d138ac
+ee93de18cb485c9178214351fa3f0a44ed41a3f7de68816b7fef6c2869af4f677f3f358533afb7
+d4f090c65f0358bb63e52d2c4878d2ea0620d1fddce9b8bc22e99bcb711de2d4086cc2950ed2fc
+50508e3aa0c15b109a3221caa9cbd6be368bc6b7a7033656d9ffc85f729d4bff1c18b00e78b5eb
+5c9cf181906885c45e315b2aba41d3cdf32f0cf301dd4eb4bf9b28c0a4d429fc84aa97633a6bba
+6ab0f43f61d0f6fa9a35256ef7bcd8fb934fa1c035a8ae3b600920b608ebb40850e4c7e3564572
+675ccc7002cc2029bb963d87385c2aaedd472a224f92187298652ba268336df3bc28b33441c1a8
+985bfe71eb30e33ee83f738123d76f94308a1a2f2f549d40b7ff6d97ed87b1989dc12aad21ba8b
+c42b2c361c50e44b74ec9db17061db171b932c910397d42c1d6a305299545952ff8ab117bff8e2
+bc2e52e7ffdf6cb64d61aef2e79481ce9a1915b207c58c4dda3d71172cd99883a27078693831a0
+7ac70c67e1eecc1dd5b3dbd0f7b445a167e77f54ecd3f88a4622771c55c53c9cb58631b60374fc
+4e6ff1ff4a26dabbc2ae562a124333c2822e4b52598cf5b4d5292df4b06800d9689c04ecd895d1
+7847d93faa68b508e524b39321aff9e749343638acab6cc92af4b447b87c3798277b3e83341988
+8cda9aeeb978ffbdda27b6628fff08a55fc41f646741d092148a2e149cb295f283b9c3a6ee040a
+ecf8a895dde8dd46908ff65a57f7cabe8dd42fbd82206e77cc64aba562e6d21726a63f5a75c4f7
+fce6a8bcd6523bc18679cf3730bcf4f1ecf3cd00d8bf63af271164211a34e3beb928abe1a06def
+8b2de826c893604c5f375c7c254c4a2a797fc1ef11b38ce154a5b337c453a307e501929d361a66
+aa0ec59243a64f8cdc31f57ec829093184386859fe4b6792265a6b32d03cf1c81e583addc7bada
+c25c98fd44a3796e33e53e9b2019d0d8c6ba3685019e67d931b5a817b2ce47a88be668bd45dac0
+5199d05b5f02de05455bf2cdd48f2b93b50edea9a5e0c871f8ac1665fedcd0bab330ee628e3df4
+514d679aa059ab3c1da74e2590354028facc543cfdbba7f90010a2aa33b7329faaa0df1c555e03
+b71f153a5cae8a5f9738bc5c53da38544cc23c785088062e05e3896956986b6210d343068b5106
+361486b7545b0547ca15f44369b663cfbb015bf312eaed766c1afb8a49609dccf84429ad244ba9
+bda8e7c8486ecfde9f4ecd69fd346986678026968855b8820383b0dc16ef600eb513433961d693
+0545f8cf0eb3b959d906c0b5b648e6ac3b2e33afbc0288b81ee909c1c6481a612e81e11ca79532
+197ad099d11a2258bb34cde121ecf57d0aa46a40f6d4ac2b193fef9d03f08f1b437be1dddce4b5
+f333c699271d8c32a3ed2d2011027463c64edc51b5d3fc0462ac49664f7e865546654275b55b91
+33d2cd4ff4eac08af89596ba113440201754364cc313d83d481291f5d324440d17434ba38ae08c
+30967a3b9bd4024a1a082214e3e33d36d47c6de264b0935df4b878333886845ccaa039d51c7ec8
+11ee55fc992e5070555bc5c67ebc6a93eebac765017942e8779a517c4d604062113bafa9765e06
+47786f038fb6d4a764abed79e47c136cda2987e523e32fc6264640052f7f9a7cf334c4e5ad44bf
+7f3e8dd8f17780474e6051e8ede7afc39d9b0aa333f9080633e5054dea93615afbfdd29a541712
+749e5a5b5853aa7b9b0c7ba996d517c1d53c1da1185aedd29039d71d9bc9af135276c81e047c56
+e4f98c8c73a33daa0a1c99a0e0898b1bd8457cb2d9785bdc00f19c1a2dad557200c80a7dd4a91f
+6e4979154d98437d6b35ca9e393c67cc8a2909ad47e9618f42fbf5baaf05e56e422a2b7b424373
+c3c28c310f15aea54d5a23e4af65880f14ea206835b94420beadb6e065bc693aa01d8b1dece2ec
+14f88a4b57dc39af18b4e27f0c6875727d9eecc572cb6db04b96fea52e20dad9a162a814ab025f
+c998ace7f8a4cb9c067ea1e5cebd1d570610cbcd3c21e0a1025ab2d5548fe6133745bdab0ebe8b
+3eb36e6e325aedac9d72dc7ab6f3134fa7448cf5a9de43a5d8e9b9bedfc940fd1b7b2fbc1aad5b
+1acb2ebbfe5ff28014636516c6190c96811f399ab37333488765e12b94e4eae180845eff7b7f10
+11b332ce4982a6e06a50395453a2a0ebcc7e875a6496716e939a60ea65666e8f4acb8c8e52d76d
+9e7a10ec53d83cbd79fd38adf1d15d6a0c404fe4f2c943d1274b2d81a1f956c521a1dddc6b3933
+5d4ae86c74fed07cb86786a6d564643ab2cd1ff77d971800e3cda261af606f2797635afbab5976
+8409b2b700de9e9245943a23e20a1c4d3e49355e80028b1138a4e0d911fd47f68ebf491ec59192
+fc2f32b8e5e2bcef8282ac40b6f0e85cdbba16467ceb2abb37cf8b71665f3add17ba3f0ddaf127
+3803fe0279725720b9ad790a53d4dcd1488779d774dc9b085b7720ba5949abf50bcff513171a91
+c584a4bb64ef2ea43d7c1f226bcfbd28ce82378310d492615e11bd4ae21c544983cb6a2b7b0649
+2177451c915fd5c35771aa693ff0e9e0f6fffc86a7427b6382e516245ab08153ac6f6c88cda675
+39fc8ce1d0c49a56ba829a1f4ae226accec2f1c0b014e2b65b5568b975f682e8e15f366ce98acb
+92bd637db29a2d1a8f52d9abe53fe0d790578ec532f6a00f3d1906fe22b8c7870ab72dd04eacaf
+3d4dd57dd3fca76d147932e58403b34c167787164f6bf67ee3acd902c70f622b24707588103d3b
+bcc7a5e6695368efb1225a1ac5a094bad9c0636ac2644c1956f325b10951389abe6ab60356e0bf
+c9f2b41efe28f830562887fd5083948ec65746f7bbaf95a1e53d440769b85546a815a9d0a6b3d0
+ca6546ab045cc4dd1f80c12f5d00845cc2fa21bbc80999f830dcd0995552e2129e387d05aca931
+8c09c86a3cb68f2e972324d484b4116880c5687f7f3fdf0c07d30fb6e3ca06f1f5f5dc372da9a4
+00f2809c6e91a207d1747355c2e81d825ba064391afda0d3d389e7ad07428ec956d92c021072e6
+2d4a3e047906724c1edac7c7a817a0afba9874f562c9cfee1a9a720cc063c529a2e3eba2971761
+69fbef06b1391631b6435a74415091d2ddb826b603288c28cd80e538ed08065935a731eadbb724
+a0bb88d4546118daac1c29d1146f6966ff7efe6166ef27a9f6fbedf0feb04181ab819aa5a3ba40
+da37f9cfd5381c6042171459800a068efddf2cb3002965862e2c6d238c988c64584c3688ac2881
+41cfc6fb42373d801f7ab2695ecf4accaf5c621876631bf525e4b827dfc175667ca9cb228b04e0
+89baf67b822a654874785f46ab4ed2d9534c913b680b3cbde0834f6199c0375a0af0bb0bd9e370
+18ee8da33f8bc1feff322b65cac9b4c64c0fcd273a50dd0a5444d00a0f6882f610189e322c9bed
+50c2d1638e4cfa1a35e11d4262e9a10bf2545a62d89bbf6dc9fb59bb70ae2c0bc089123e4c2d09
+772658704ddbcafd24e944b539a9e2b31ee9027dbf3a51f7624d1e7b4b8865b9f24da2cc683262
+49f38525f48d500fb3cc9f45f571c44b9395a9ffde275e6f5836c56771ae8f6b2220abdad7ba92
+ae826641e53d8e1cc26d8d084dc3eed60fc95f8d6fc8f930cf486519d8ca78097a36e28ec9dd73
+9a8e5473b844fc19b6546b781651cc6abeca7c0bf5dd430c7856d540b61473d51a7b8a41cef102
+12c4f72cec52578b6cb953fffdc5bd76492816bae82dcca71a0ee35bf2767e396e6949987b5eb9
+d396bbab38ec101f58640a536ae90ba70a332f425fb093da1b44738d0af8b32d4ecdee917c6053
+7b8f99fe2c28ca5c1386bb420d74132ce366aceffca433bab41d0f4940b5327ec70c1438b4c1aa
+4e12107d2e70d8f57a19e5a293f4c0c3b6ae63f41d5bb4fd6514649ef45cefea0dc7f085c01d7a
+bc2d23b6ae8fe15b139bfdf3c39b5688302daf38616cd78b99002cf83cbee48e8f88352d90f9a3
+1b7178bc67f54407be5c5f52b4cc8551bd2c5ffeae478396f890f6766fc41b18b474ce9d87f262
+8bb1ca1277237c5301315aa45738fcb7bbdf060bd51347c1be22bee53a349108037b78dd0421c5
+476a81f7d212fa9509116c616762cf1c657e89414806733156d5b8759bd8780dd4b8d99389790d
+4231b47a650391cf97b70858e0dceacd5fb524e5f44f0cdafc8b037ce72e93de2bacdf82a55641
+6ed0111d2cbbf406a4aebd8670050710a083ea7372011e3bd20177281b68deedd16052f5d30d2e
+11712db732fee061b8a1245eb3970bfc40134662e723befc1f7781008054c2288ac94bf2e52416
+5d0479bb75729819bf27f59cb0616c73120704cc0869ab963381d4abc036aa155a95d345e1b691
+bff734f2b3bbee539274530b240c5e5ddb46d79fa7c9e8280e8632c546ccc7cc41974657bc723e
+ba685086deb805e07d8d499aa4089453386e7ed24a9c2cd1c857bd40c3a752cded2abfcdeca0b9
+6163d90b0de84f297d671cf15e7b2609e566895dddb41a0b495b20f613690267121f3b1119d4ff
+41d228660d4fa0b1b7b6c511e0e530734d2da8e2dd8f082c1c06dabb9463080ebbe2cd848fe4c4
+b1a4851002b7d419eed50a6c904b020a9580590796e11076156f3a66d9164a05588b6d272a1347
+225e115c67e9433d238ec2718a5ab53243e0dc6f9db4f179387eeb4019d2a9d584286bdcd4e750
+0b55bf2f70689f761f53dbd79559eab6d58233bd65334af337b596e4f1866d8f4a989cfdbf970f
+45a22a32c53c4fa52108177534b0bfaa3299a2aa2561c61f0fc05fc2b0e56f861aef57e9418478
+e3646b7b6bf3a2c7732dec7afca0fd2169d9b8b26dce83f7ff42c149b09d99529f49078f5422f2
+20d5548769db348312c39dee18fef0eaf37a544f5b55506ca0c2c52f5bc918be704394ef8ab354
+b2eb4d6cefa963ef0c304a107f5e34d693a52f16e4df84149affddce09bfc87b6af8eb87d5448f
+fe8327b4800dec4327ab8257c1ceb7021b1e0fd8381e54c1cf1c0f54ab291777c6cb19d6044d82
+a9edb56df5abab862a3c62a8ee2f5caaf92fe70d5a584a2c1ba16f3376f24e766e6d797490fe5c
+44692b2add37af335f85ee4415d9f1d1082afb97e4d358463056e69cffc1df788ead73d9a52b06
+a2933a3e86e2abef8fc4b96285ded5ebf11bd7656c73ee4a6d963b1dcbb1b76d8b5bb6b783f5d7
+173667c76902426d48badf027941f5faa1cd5ff354d3058b7e333fa8550a695b3411ed3d46edbe
+396b09cf854999a0f4fe1d221eed76a341088ac5d2da34adea6da8aec1cf43ee9bd9f2bdc8aa47
+39321d1c04368ac3680af97310716a06b7cf9586713ca0d3d43fd4019ce717af28624fd39819b5
+813a2de83040b16bffbb47c48a55a8929982ecba3668ce24168d5ac9c604b495b31f7538a47fff
+0bd3981dbce24924ef7243e3cbe51fc60d9df8373e7929f05f5e868192dcb86ff33b0668cb8d1e
+4461eb7e8f2681fa275454b970c884d07cff6e80bf5e7737c49720540bde77739e7c4d7eb85f95
+9ce463a99bd16cfa5d219180e9f037ded82e8b159203343e52fb550c844c5c49c45319e392acb4
+2c5bcd0c81cfa4a3eb571cdf656065b0fa4aba7f454937c806515fe7d8f257bc1cfeb3d2c902c2
+1d4e2730564b4fa0ffe6062ca8fa11017844dd52a7185c5d1d79224d42514de8edcab4364466d2
+1f2f06e2c5ab233e6be9c550ec12eacf6eafe514d4c83bdc0b91e73a2afd5f8d63282a863860c4
+333ca554f83517d7bd8d35367ac647ad9d6d97f860755dcf7c70bcdc5c116970fa18b01b2495b2
+be66723b0209f4d98fe9e8aced7ce731d6926edc6b51212db2b87aad63d20eec2c2c1114b0057c
+4ab94a906440d1c3c721253aaa9aa6c862ce058df549ac307bd43a126b757cbefaeb7f12045321
+90a161ecd389d52bb71d0e88ba87ee75ca0bb6f9b1ab731f9315fbc3da65fedc452040228b4df9
+9adfd2e193826cd3747288ae57b3b077ab4f8f5bac1c9edcf2fdedd00f58775991194d053484c2
+94501c0b1fcbdd2b1fbb67aab01a21da0683609aba40163aec962b41d386be720d91d19c230d3e
+2c9c85fd9a046e17e1cfc54f974af72e4579dcdd9a0fbccdc60f2669aa65462497a04df6cda4d0
+515709be6470b10575d2b55ce00d1ba39609115a7f3c5bc0782f50ba62951c9978c2a0e4163ad4
+c951581c46891a2a0984a07301502301f2c617fa4a09cf45e420f60cbcfe6ae4c51024b618d30f
+44d28064606f520435707f98ff4ad44348a5ff5baf63ffb00226ac68e4a019fced4a4770190217
+3b40806c7441453cbc0ca26810550a29aa72ce7fd5bc97de78eb817c691d4147490feed9deb5f6
+5b96dc9f6b4b468464fb90dd983b8e6dd5a29c74a59723d8fd300f0c51e8e9865759404ebe17cc
+89b97313e20ddf1c8aa5406fe7d9e25406e29c0b6da8c22795627e41247968f1ae5a7fcf9f3847
+dfa8954d5abf0c826daa6cef675a5a89daa819ad22bd67ab429cb6ff17e8306241e92d38d559b4
+a2573dc13b18c2eace9d65ee41ad8cb29e5e077626dc7ef13df855a0d719b45e48f4e1780a732e
+1a041de0717e296bb1dd6c01c3cd752292f51ce5b6a0bbfd36a407006835c5cbf4f1925ed55e6b
+a3b68a7b205fa6d14ccd6f6eec6b703fef00704aaf0dcc59b332f0ebccc479bfac8b24337b94dc
+e2a9f301c95d8ad027454df11749e0d4ed5089d6b0037eff4668b7db1723a3c849f819c9d814b3
+d5b0c8cf0f785674071284afd75462d3a20514d77d9c4cf0ea7c36927ddb24a69c43b343ca533a
+431dd28e72eb8a41f080a7af8dab590c2fe9c1c907a8155e49374b3cfbd5f3aa5d934778155bc5
+cbd4f3e43f1d95162a12de9300fb2099a0293d23c1252532517c902b8f5f427fe731623b8a7486
+83767d05a42075b36009bd6384fb8b8c2142ffaca606d081f0d759d03b0fcc04e4ba6435331484
+39a20be004ab8a8b35de236d89826ea8c44746019640109847e58eba718bc7cf1f69fd084cf982
+618fbf793bb4ced13c07c5678de7d891c43b85c933d5ac550c57a59fbe5a2a83c31f65d3c03bab
+074171d745143c986bf2d6e54f3003a44b96ea786acd356aa08e991cc8d67c039de9cb251c65e2
+a878b6aff464abb8fb8ed8b4a04ddf34cb499e5db0718ad34abd83683e827ef0486f6f343df3e1
+605919d54e41586177d3a39d1925adbc405aeb700e26de434bf8c68b43082a819cbb025aefb0c7
+95e58a76595d10d4d9cedc3bd860a2a86765d5450bc50684693f44854aa30d3134ad36b76c6288
+98fae6daf36950834a604fe06e3622f223f1b0e36e5302b19350c614f1fbfbe4d19286861c770f
+49e0a3a9e8a951ec52f531e6218cb2d60c10b14382b245ea8c0e94f5a47b1ff32b66b4d776a270
+b2d682b8a3bc22f17565de27ff853522cdf20d6fed095d143b6e78ffd75a3d939daaa4f13bb963
+38c7fd0a3a69c82b562c98f43e3c6364d07a23337ebf72074f0c30ddbed686579ffc8e16d5baaa
+934ec5549a884a08a1d08ea1fc87dcc7170d666ed19e8a968484f1379ad71472a86333defa2574
+0856027de184209a47889c55ba83b92f5ad3c14656343061863c92d7e9187efe4c1e798ba45018
+6dfd17faa45df9f7ef983c4a748882ed8edb7f6f03b6a9d61b9284f658fab4f9b3f6647ddd37db
+e5494b28c3ca0eb6f8150f6aabf898e67de6554210fddf164788fc8fa430fa16397204cdb55cc5
+f24b0e1a1ca6f9270f14b31e
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+cleartomark
+
+%%EndResource
+%%EndSetup
+%%Page: 1 1
+%%BeginPageSetup
+%%PageBoundingBox: 30 125 562 834
+%%EndPageSetup
+q 30 125 532 709 rectclip
+1 0 0 -1 0 842 cm q
+0 g
+481.801 10 m 481.801 7.602 478.199 7.602 478.199 10 c 478.199 12.398 481.801
+ 12.398 481.801 10 c h
+481.801 10 m f*
+481.801 42 m 481.801 39.602 478.199 39.602 478.199 42 c 478.199 44.398 
+481.801 44.398 481.801 42 c h
+481.801 42 m f*
+481.801 74 m 481.801 71.602 478.199 71.602 478.199 74 c 478.199 76.398 
+481.801 76.398 481.801 74 c h
+481.801 74 m f*
+481.801 106 m 481.801 103.602 478.199 103.602 478.199 106 c 478.199 108.398
+ 481.801 108.398 481.801 106 c h
+481.801 106 m f*
+481.801 138 m 481.801 135.602 478.199 135.602 478.199 138 c 478.199 140.398
+ 481.801 140.398 481.801 138 c h
+481.801 138 m f*
+481.801 170 m 481.801 167.602 478.199 167.602 478.199 170 c 478.199 172.398
+ 481.801 172.398 481.801 170 c h
+481.801 170 m f*
+481.801 202 m 481.801 199.602 478.199 199.602 478.199 202 c 478.199 204.398
+ 481.801 204.398 481.801 202 c h
+481.801 202 m f*
+481.801 234 m 481.801 231.602 478.199 231.602 478.199 234 c 478.199 236.398
+ 481.801 236.398 481.801 234 c h
+481.801 234 m f*
+481.801 266 m 481.801 263.602 478.199 263.602 478.199 266 c 478.199 268.398
+ 481.801 268.398 481.801 266 c h
+481.801 266 m f*
+481.801 298 m 481.801 295.602 478.199 295.602 478.199 298 c 478.199 300.398
+ 481.801 300.398 481.801 298 c h
+481.801 298 m f*
+481.801 330 m 481.801 327.602 478.199 327.602 478.199 330 c 478.199 332.398
+ 481.801 332.398 481.801 330 c h
+481.801 330 m f*
+497.801 282 m 497.801 279.602 494.199 279.602 494.199 282 c 494.199 284.398
+ 497.801 284.398 497.801 282 c h
+497.801 282 m f*
+513.801 266 m 513.801 263.602 510.199 263.602 510.199 266 c 510.199 268.398
+ 513.801 268.398 513.801 266 c h
+513.801 266 m f*
+529.801 250 m 529.801 247.602 526.199 247.602 526.199 250 c 526.199 252.398
+ 529.801 252.398 529.801 250 c h
+529.801 250 m f*
+545.801 234 m 545.801 231.602 542.199 231.602 542.199 234 c 542.199 236.398
+ 545.801 236.398 545.801 234 c h
+545.801 234 m f*
+465.801 282 m 465.801 279.602 462.199 279.602 462.199 282 c 462.199 284.398
+ 465.801 284.398 465.801 282 c h
+465.801 282 m f*
+449.801 266 m 449.801 263.602 446.199 263.602 446.199 266 c 446.199 268.398
+ 449.801 268.398 449.801 266 c h
+449.801 266 m f*
+433.801 250 m 433.801 247.602 430.199 247.602 430.199 250 c 430.199 252.398
+ 433.801 252.398 433.801 250 c h
+433.801 250 m f*
+417.801 234 m 417.801 231.602 414.199 231.602 414.199 234 c 414.199 236.398
+ 417.801 236.398 417.801 234 c h
+417.801 234 m f*
+465.801 26 m 465.801 23.602 462.199 23.602 462.199 26 c 462.199 28.398 
+465.801 28.398 465.801 26 c h
+465.801 26 m f*
+449.801 42 m 449.801 39.602 446.199 39.602 446.199 42 c 446.199 44.398 
+449.801 44.398 449.801 42 c h
+449.801 42 m f*
+433.801 58 m 433.801 55.602 430.199 55.602 430.199 58 c 430.199 60.398 
+433.801 60.398 433.801 58 c h
+433.801 58 m f*
+417.801 74 m 417.801 71.602 414.199 71.602 414.199 74 c 414.199 76.398 
+417.801 76.398 417.801 74 c h
+417.801 74 m f*
+497.801 26 m 497.801 23.602 494.199 23.602 494.199 26 c 494.199 28.398 
+497.801 28.398 497.801 26 c h
+497.801 26 m f*
+513.801 42 m 513.801 39.602 510.199 39.602 510.199 42 c 510.199 44.398 
+513.801 44.398 513.801 42 c h
+513.801 42 m f*
+529.801 58 m 529.801 55.602 526.199 55.602 526.199 58 c 526.199 60.398 
+529.801 60.398 529.801 58 c h
+529.801 58 m f*
+545.801 74 m 545.801 71.602 542.199 71.602 542.199 74 c 542.199 76.398 
+545.801 76.398 545.801 74 c h
+545.801 74 m f*
+417.801 106 m 417.801 103.602 414.199 103.602 414.199 106 c 414.199 108.398
+ 417.801 108.398 417.801 106 c h
+417.801 106 m f*
+417.801 138 m 417.801 135.602 414.199 135.602 414.199 138 c 414.199 140.398
+ 417.801 140.398 417.801 138 c h
+417.801 138 m f*
+417.801 170 m 417.801 167.602 414.199 167.602 414.199 170 c 414.199 172.398
+ 417.801 172.398 417.801 170 c h
+417.801 170 m f*
+417.801 202 m 417.801 199.602 414.199 199.602 414.199 202 c 414.199 204.398
+ 417.801 204.398 417.801 202 c h
+417.801 202 m f*
+545.801 202 m 545.801 199.602 542.199 199.602 542.199 202 c 542.199 204.398
+ 545.801 204.398 545.801 202 c h
+545.801 202 m f*
+545.801 170 m 545.801 167.602 542.199 167.602 542.199 170 c 542.199 172.398
+ 545.801 172.398 545.801 170 c h
+545.801 170 m f*
+545.801 138 m 545.801 135.602 542.199 135.602 542.199 138 c 542.199 140.398
+ 545.801 140.398 545.801 138 c h
+545.801 138 m f*
+545.801 106 m 545.801 103.602 542.199 103.602 542.199 106 c 542.199 108.398
+ 545.801 108.398 545.801 106 c h
+545.801 106 m f*
+497.801 58 m 497.801 55.602 494.199 55.602 494.199 58 c 494.199 60.398 
+497.801 60.398 497.801 58 c h
+497.801 58 m f*
+465.801 58 m 465.801 55.602 462.199 55.602 462.199 58 c 462.199 60.398 
+465.801 60.398 465.801 58 c h
+465.801 58 m f*
+449.801 74 m 449.801 71.602 446.199 71.602 446.199 74 c 446.199 76.398 
+449.801 76.398 449.801 74 c h
+449.801 74 m f*
+513.801 74 m 513.801 71.602 510.199 71.602 510.199 74 c 510.199 76.398 
+513.801 76.398 513.801 74 c h
+513.801 74 m f*
+433.801 90 m 433.801 87.602 430.199 87.602 430.199 90 c 430.199 92.398 
+433.801 92.398 433.801 90 c h
+433.801 90 m f*
+465.801 90 m 465.801 87.602 462.199 87.602 462.199 90 c 462.199 92.398 
+465.801 92.398 465.801 90 c h
+465.801 90 m f*
+497.801 90 m 497.801 87.602 494.199 87.602 494.199 90 c 494.199 92.398 
+497.801 92.398 497.801 90 c h
+497.801 90 m f*
+529.801 90 m 529.801 87.602 526.199 87.602 526.199 90 c 526.199 92.398 
+529.801 92.398 529.801 90 c h
+529.801 90 m f*
+449.801 106 m 449.801 103.602 446.199 103.602 446.199 106 c 446.199 108.398
+ 449.801 108.398 449.801 106 c h
+449.801 106 m f*
+513.801 106 m 513.801 103.602 510.199 103.602 510.199 106 c 510.199 108.398
+ 513.801 108.398 513.801 106 c h
+513.801 106 m f*
+433.801 122 m 433.801 119.602 430.199 119.602 430.199 122 c 430.199 124.398
+ 433.801 124.398 433.801 122 c h
+433.801 122 m f*
+465.801 122 m 465.801 119.602 462.199 119.602 462.199 122 c 462.199 124.398
+ 465.801 124.398 465.801 122 c h
+465.801 122 m f*
+497.801 122 m 497.801 119.602 494.199 119.602 494.199 122 c 494.199 124.398
+ 497.801 124.398 497.801 122 c h
+497.801 122 m f*
+529.801 122 m 529.801 119.602 526.199 119.602 526.199 122 c 526.199 124.398
+ 529.801 124.398 529.801 122 c h
+529.801 122 m f*
+449.801 138 m 449.801 135.602 446.199 135.602 446.199 138 c 446.199 140.398
+ 449.801 140.398 449.801 138 c h
+449.801 138 m f*
+513.801 138 m 513.801 135.602 510.199 135.602 510.199 138 c 510.199 140.398
+ 513.801 140.398 513.801 138 c h
+513.801 138 m f*
+433.801 154 m 433.801 151.602 430.199 151.602 430.199 154 c 430.199 156.398
+ 433.801 156.398 433.801 154 c h
+433.801 154 m f*
+465.801 154 m 465.801 151.602 462.199 151.602 462.199 154 c 462.199 156.398
+ 465.801 156.398 465.801 154 c h
+465.801 154 m f*
+497.801 154 m 497.801 151.602 494.199 151.602 494.199 154 c 494.199 156.398
+ 497.801 156.398 497.801 154 c h
+497.801 154 m f*
+529.801 154 m 529.801 151.602 526.199 151.602 526.199 154 c 526.199 156.398
+ 529.801 156.398 529.801 154 c h
+529.801 154 m f*
+433.801 186 m 433.801 183.602 430.199 183.602 430.199 186 c 430.199 188.398
+ 433.801 188.398 433.801 186 c h
+433.801 186 m f*
+433.801 218 m 433.801 215.602 430.199 215.602 430.199 218 c 430.199 220.398
+ 433.801 220.398 433.801 218 c h
+433.801 218 m f*
+449.801 170 m 449.801 167.602 446.199 167.602 446.199 170 c 446.199 172.398
+ 449.801 172.398 449.801 170 c h
+449.801 170 m f*
+449.801 202 m 449.801 199.602 446.199 199.602 446.199 202 c 446.199 204.398
+ 449.801 204.398 449.801 202 c h
+449.801 202 m f*
+449.801 234 m 449.801 231.602 446.199 231.602 446.199 234 c 446.199 236.398
+ 449.801 236.398 449.801 234 c h
+449.801 234 m f*
+465.801 186 m 465.801 183.602 462.199 183.602 462.199 186 c 462.199 188.398
+ 465.801 188.398 465.801 186 c h
+465.801 186 m f*
+465.801 218 m 465.801 215.602 462.199 215.602 462.199 218 c 462.199 220.398
+ 465.801 220.398 465.801 218 c h
+465.801 218 m f*
+465.801 250 m 465.801 247.602 462.199 247.602 462.199 250 c 462.199 252.398
+ 465.801 252.398 465.801 250 c h
+465.801 250 m f*
+497.801 186 m 497.801 183.602 494.199 183.602 494.199 186 c 494.199 188.398
+ 497.801 188.398 497.801 186 c h
+497.801 186 m f*
+497.801 218 m 497.801 215.602 494.199 215.602 494.199 218 c 494.199 220.398
+ 497.801 220.398 497.801 218 c h
+497.801 218 m f*
+497.801 250 m 497.801 247.602 494.199 247.602 494.199 250 c 494.199 252.398
+ 497.801 252.398 497.801 250 c h
+497.801 250 m f*
+513.801 170 m 513.801 167.602 510.199 167.602 510.199 170 c 510.199 172.398
+ 513.801 172.398 513.801 170 c h
+513.801 170 m f*
+513.801 202 m 513.801 199.602 510.199 199.602 510.199 202 c 510.199 204.398
+ 513.801 204.398 513.801 202 c h
+513.801 202 m f*
+513.801 234 m 513.801 231.602 510.199 231.602 510.199 234 c 510.199 236.398
+ 513.801 236.398 513.801 234 c h
+513.801 234 m f*
+529.801 218 m 529.801 215.602 526.199 215.602 526.199 218 c 526.199 220.398
+ 529.801 220.398 529.801 218 c h
+529.801 218 m f*
+529.801 186 m 529.801 183.602 526.199 183.602 526.199 186 c 526.199 188.398
+ 529.801 188.398 529.801 186 c h
+529.801 186 m f*
+0.4 w
+0 J
+1 j
+[] 0.0 d
+10 M 416 74 m 480 10 l 544 74 l 544 234 l 480 298 l 416 234 l 416 106 l 496 
+26 l S
+416 74 m 416 106 l S
+432 58 m 432 250 l S
+448 42 m 448 266 l S
+464 26 m 464 282 l S
+480 10 m 480 330 l S
+496 26 m 496 282 l S
+512 42 m 512 266 l S
+528 58 m 528 250 l S
+416 138 m 512 42 l S
+528 58 m 416 170 l S
+416 202 m 544 74 l S
+544 106 m 416 234 l S
+432 250 m 544 138 l S
+544 170 m 448 266 l S
+464 282 m 544 202 l S
+416 202 m 496 282 l S
+416 170 m 512 266 l S
+416 138 m 528 250 l S
+416 106 m 544 234 l S
+416 74 m 544 202 l S
+432 58 m 544 170 l S
+448 42 m 544 138 l S
+464 26 m 544 106 l S
+480 10 m 544 74 l S
+417.801 346 m 417.801 343.602 414.199 343.602 414.199 346 c 414.199 348.398
+ 417.801 348.398 417.801 346 c h
+417.801 346 m f*
+433.801 362 m 433.801 359.602 430.199 359.602 430.199 362 c 430.199 364.398
+ 433.801 364.398 433.801 362 c h
+433.801 362 m f*
+449.801 378 m 449.801 375.602 446.199 375.602 446.199 378 c 446.199 380.398
+ 449.801 380.398 449.801 378 c h
+449.801 378 m f*
+465.801 394 m 465.801 391.602 462.199 391.602 462.199 394 c 462.199 396.398
+ 465.801 396.398 465.801 394 c h
+465.801 394 m f*
+401.801 362 m 401.801 359.602 398.199 359.602 398.199 362 c 398.199 364.398
+ 401.801 364.398 401.801 362 c h
+401.801 362 m f*
+385.801 378 m 385.801 375.602 382.199 375.602 382.199 378 c 382.199 380.398
+ 385.801 380.398 385.801 378 c h
+385.801 378 m f*
+369.801 394 m 369.801 391.602 366.199 391.602 366.199 394 c 366.199 396.398
+ 369.801 396.398 369.801 394 c h
+369.801 394 m f*
+369.801 426 m 369.801 423.602 366.199 423.602 366.199 426 c 366.199 428.398
+ 369.801 428.398 369.801 426 c h
+369.801 426 m f*
+369.801 458 m 369.801 455.602 366.199 455.602 366.199 458 c 366.199 460.398
+ 369.801 460.398 369.801 458 c h
+369.801 458 m f*
+465.801 426 m 465.801 423.602 462.199 423.602 462.199 426 c 462.199 428.398
+ 465.801 428.398 465.801 426 c h
+465.801 426 m f*
+465.801 458 m 465.801 455.602 462.199 455.602 462.199 458 c 462.199 460.398
+ 465.801 460.398 465.801 458 c h
+465.801 458 m f*
+401.801 458 m 401.801 455.602 398.199 455.602 398.199 458 c 398.199 460.398
+ 401.801 460.398 401.801 458 c h
+401.801 458 m f*
+433.801 458 m 433.801 455.602 430.199 455.602 430.199 458 c 430.199 460.398
+ 433.801 460.398 433.801 458 c h
+433.801 458 m f*
+385.801 442 m 385.801 439.602 382.199 439.602 382.199 442 c 382.199 444.398
+ 385.801 444.398 385.801 442 c h
+385.801 442 m f*
+417.801 442 m 417.801 439.602 414.199 439.602 414.199 442 c 414.199 444.398
+ 417.801 444.398 417.801 442 c h
+417.801 442 m f*
+449.801 442 m 449.801 439.602 446.199 439.602 446.199 442 c 446.199 444.398
+ 449.801 444.398 449.801 442 c h
+449.801 442 m f*
+433.801 426 m 433.801 423.602 430.199 423.602 430.199 426 c 430.199 428.398
+ 433.801 428.398 433.801 426 c h
+433.801 426 m f*
+401.801 426 m 401.801 423.602 398.199 423.602 398.199 426 c 398.199 428.398
+ 401.801 428.398 401.801 426 c h
+401.801 426 m f*
+385.801 410 m 385.801 407.602 382.199 407.602 382.199 410 c 382.199 412.398
+ 385.801 412.398 385.801 410 c h
+385.801 410 m f*
+417.801 410 m 417.801 407.602 414.199 407.602 414.199 410 c 414.199 412.398
+ 417.801 412.398 417.801 410 c h
+417.801 410 m f*
+449.801 410 m 449.801 407.602 446.199 407.602 446.199 410 c 446.199 412.398
+ 449.801 412.398 449.801 410 c h
+449.801 410 m f*
+433.801 394 m 433.801 391.602 430.199 391.602 430.199 394 c 430.199 396.398
+ 433.801 396.398 433.801 394 c h
+433.801 394 m f*
+401.801 394 m 401.801 391.602 398.199 391.602 398.199 394 c 398.199 396.398
+ 401.801 396.398 401.801 394 c h
+401.801 394 m f*
+417.801 378 m 417.801 375.602 414.199 375.602 414.199 378 c 414.199 380.398
+ 417.801 380.398 417.801 378 c h
+417.801 378 m f*
+481.801 442 m 481.801 439.602 478.199 439.602 478.199 442 c 478.199 444.398
+ 481.801 444.398 481.801 442 c h
+481.801 442 m f*
+497.801 426 m 497.801 423.602 494.199 423.602 494.199 426 c 494.199 428.398
+ 497.801 428.398 497.801 426 c h
+497.801 426 m f*
+353.801 442 m 353.801 439.602 350.199 439.602 350.199 442 c 350.199 444.398
+ 353.801 444.398 353.801 442 c h
+353.801 442 m f*
+337.801 426 m 337.801 423.602 334.199 423.602 334.199 426 c 334.199 428.398
+ 337.801 428.398 337.801 426 c h
+337.801 426 m f*
+417.801 474 m 417.801 471.602 414.199 471.602 414.199 474 c 414.199 476.398
+ 417.801 476.398 417.801 474 c h
+417.801 474 m f*
+417.801 506 m 417.801 503.602 414.199 503.602 414.199 506 c 414.199 508.398
+ 417.801 508.398 417.801 506 c h
+417.801 506 m f*
+417.801 538 m 417.801 535.602 414.199 535.602 414.199 538 c 414.199 540.398
+ 417.801 540.398 417.801 538 c h
+417.801 538 m f*
+417.801 570 m 417.801 567.602 414.199 567.602 414.199 570 c 414.199 572.398
+ 417.801 572.398 417.801 570 c h
+417.801 570 m f*
+417.801 602 m 417.801 599.602 414.199 599.602 414.199 602 c 414.199 604.398
+ 417.801 604.398 417.801 602 c h
+417.801 602 m f*
+417.801 634 m 417.801 631.602 414.199 631.602 414.199 634 c 414.199 636.398
+ 417.801 636.398 417.801 634 c h
+417.801 634 m f*
+417.801 666 m 417.801 663.602 414.199 663.602 414.199 666 c 414.199 668.398
+ 417.801 668.398 417.801 666 c h
+417.801 666 m f*
+0 1 0 rg
+417.801 698 m 417.801 695.602 414.199 695.602 414.199 698 c 414.199 700.398
+ 417.801 700.398 417.801 698 c h
+417.801 698 m f*
+0 g
+513.801 442 m 513.801 439.602 510.199 439.602 510.199 442 c 510.199 444.398
+ 513.801 444.398 513.801 442 c h
+513.801 442 m f*
+529.801 458 m 529.801 455.602 526.199 455.602 526.199 458 c 526.199 460.398
+ 529.801 460.398 529.801 458 c h
+529.801 458 m f*
+321.801 442 m 321.801 439.602 318.199 439.602 318.199 442 c 318.199 444.398
+ 321.801 444.398 321.801 442 c h
+321.801 442 m f*
+305.801 458 m 305.801 455.602 302.199 455.602 302.199 458 c 302.199 460.398
+ 305.801 460.398 305.801 458 c h
+305.801 458 m f*
+529.801 490 m 529.801 487.602 526.199 487.602 526.199 490 c 526.199 492.398
+ 529.801 492.398 529.801 490 c h
+529.801 490 m f*
+545.801 474 m 545.801 471.602 542.199 471.602 542.199 474 c 542.199 476.398
+ 545.801 476.398 545.801 474 c h
+545.801 474 m f*
+561.801 490 m 561.801 487.602 558.199 487.602 558.199 490 c 558.199 492.398
+ 561.801 492.398 561.801 490 c h
+561.801 490 m f*
+561.801 522 m 561.801 519.602 558.199 519.602 558.199 522 c 558.199 524.398
+ 561.801 524.398 561.801 522 c h
+561.801 522 m f*
+433.801 650 m 433.801 647.602 430.199 647.602 430.199 650 c 430.199 652.398
+ 433.801 652.398 433.801 650 c h
+433.801 650 m f*
+449.801 634 m 449.801 631.602 446.199 631.602 446.199 634 c 446.199 636.398
+ 449.801 636.398 449.801 634 c h
+449.801 634 m f*
+465.801 618 m 465.801 615.602 462.199 615.602 462.199 618 c 462.199 620.398
+ 465.801 620.398 465.801 618 c h
+465.801 618 m f*
+481.801 602 m 481.801 599.602 478.199 599.602 478.199 602 c 478.199 604.398
+ 481.801 604.398 481.801 602 c h
+481.801 602 m f*
+497.801 586 m 497.801 583.602 494.199 583.602 494.199 586 c 494.199 588.398
+ 497.801 588.398 497.801 586 c h
+497.801 586 m f*
+513.801 570 m 513.801 567.602 510.199 567.602 510.199 570 c 510.199 572.398
+ 513.801 572.398 513.801 570 c h
+513.801 570 m f*
+529.801 554 m 529.801 551.602 526.199 551.602 526.199 554 c 526.199 556.398
+ 529.801 556.398 529.801 554 c h
+529.801 554 m f*
+545.801 538 m 545.801 535.602 542.199 535.602 542.199 538 c 542.199 540.398
+ 545.801 540.398 545.801 538 c h
+545.801 538 m f*
+305.801 490 m 305.801 487.602 302.199 487.602 302.199 490 c 302.199 492.398
+ 305.801 492.398 305.801 490 c h
+305.801 490 m f*
+289.801 474 m 289.801 471.602 286.199 471.602 286.199 474 c 286.199 476.398
+ 289.801 476.398 289.801 474 c h
+289.801 474 m f*
+273.801 490 m 273.801 487.602 270.199 487.602 270.199 490 c 270.199 492.398
+ 273.801 492.398 273.801 490 c h
+273.801 490 m f*
+273.801 522 m 273.801 519.602 270.199 519.602 270.199 522 c 270.199 524.398
+ 273.801 524.398 273.801 522 c h
+273.801 522 m f*
+289.801 538 m 289.801 535.602 286.199 535.602 286.199 538 c 286.199 540.398
+ 289.801 540.398 289.801 538 c h
+289.801 538 m f*
+305.801 554 m 305.801 551.602 302.199 551.602 302.199 554 c 302.199 556.398
+ 305.801 556.398 305.801 554 c h
+305.801 554 m f*
+321.801 570 m 321.801 567.602 318.199 567.602 318.199 570 c 318.199 572.398
+ 321.801 572.398 321.801 570 c h
+321.801 570 m f*
+337.801 586 m 337.801 583.602 334.199 583.602 334.199 586 c 334.199 588.398
+ 337.801 588.398 337.801 586 c h
+337.801 586 m f*
+353.801 602 m 353.801 599.602 350.199 599.602 350.199 602 c 350.199 604.398
+ 353.801 604.398 353.801 602 c h
+353.801 602 m f*
+369.801 618 m 369.801 615.602 366.199 615.602 366.199 618 c 366.199 620.398
+ 369.801 620.398 369.801 618 c h
+369.801 618 m f*
+385.801 634 m 385.801 631.602 382.199 631.602 382.199 634 c 382.199 636.398
+ 385.801 636.398 385.801 634 c h
+385.801 634 m f*
+401.801 650 m 401.801 647.602 398.199 647.602 398.199 650 c 398.199 652.398
+ 401.801 652.398 401.801 650 c h
+401.801 650 m f*
+433.801 618 m 433.801 615.602 430.199 615.602 430.199 618 c 430.199 620.398
+ 433.801 620.398 433.801 618 c h
+433.801 618 m f*
+401.801 618 m 401.801 615.602 398.199 615.602 398.199 618 c 398.199 620.398
+ 401.801 620.398 401.801 618 c h
+401.801 618 m f*
+385.801 602 m 385.801 599.602 382.199 599.602 382.199 602 c 382.199 604.398
+ 385.801 604.398 385.801 602 c h
+385.801 602 m f*
+449.801 602 m 449.801 599.602 446.199 599.602 446.199 602 c 446.199 604.398
+ 449.801 604.398 449.801 602 c h
+449.801 602 m f*
+465.801 586 m 465.801 583.602 462.199 583.602 462.199 586 c 462.199 588.398
+ 465.801 588.398 465.801 586 c h
+465.801 586 m f*
+433.801 586 m 433.801 583.602 430.199 583.602 430.199 586 c 430.199 588.398
+ 433.801 588.398 433.801 586 c h
+433.801 586 m f*
+401.801 586 m 401.801 583.602 398.199 583.602 398.199 586 c 398.199 588.398
+ 401.801 588.398 401.801 586 c h
+401.801 586 m f*
+369.801 586 m 369.801 583.602 366.199 583.602 366.199 586 c 366.199 588.398
+ 369.801 588.398 369.801 586 c h
+369.801 586 m f*
+353.801 570 m 353.801 567.602 350.199 567.602 350.199 570 c 350.199 572.398
+ 353.801 572.398 353.801 570 c h
+353.801 570 m f*
+385.801 570 m 385.801 567.602 382.199 567.602 382.199 570 c 382.199 572.398
+ 385.801 572.398 385.801 570 c h
+385.801 570 m f*
+449.801 570 m 449.801 567.602 446.199 567.602 446.199 570 c 446.199 572.398
+ 449.801 572.398 449.801 570 c h
+449.801 570 m f*
+481.801 570 m 481.801 567.602 478.199 567.602 478.199 570 c 478.199 572.398
+ 481.801 572.398 481.801 570 c h
+481.801 570 m f*
+497.801 554 m 497.801 551.602 494.199 551.602 494.199 554 c 494.199 556.398
+ 497.801 556.398 497.801 554 c h
+497.801 554 m f*
+465.801 554 m 465.801 551.602 462.199 551.602 462.199 554 c 462.199 556.398
+ 465.801 556.398 465.801 554 c h
+465.801 554 m f*
+433.801 554 m 433.801 551.602 430.199 551.602 430.199 554 c 430.199 556.398
+ 433.801 556.398 433.801 554 c h
+433.801 554 m f*
+401.801 554 m 401.801 551.602 398.199 551.602 398.199 554 c 398.199 556.398
+ 401.801 556.398 401.801 554 c h
+401.801 554 m f*
+369.801 554 m 369.801 551.602 366.199 551.602 366.199 554 c 366.199 556.398
+ 369.801 556.398 369.801 554 c h
+369.801 554 m f*
+337.801 554 m 337.801 551.602 334.199 551.602 334.199 554 c 334.199 556.398
+ 337.801 556.398 337.801 554 c h
+337.801 554 m f*
+321.801 538 m 321.801 535.602 318.199 535.602 318.199 538 c 318.199 540.398
+ 321.801 540.398 321.801 538 c h
+321.801 538 m f*
+353.801 538 m 353.801 535.602 350.199 535.602 350.199 538 c 350.199 540.398
+ 353.801 540.398 353.801 538 c h
+353.801 538 m f*
+385.801 538 m 385.801 535.602 382.199 535.602 382.199 538 c 382.199 540.398
+ 385.801 540.398 385.801 538 c h
+385.801 538 m f*
+449.801 538 m 449.801 535.602 446.199 535.602 446.199 538 c 446.199 540.398
+ 449.801 540.398 449.801 538 c h
+449.801 538 m f*
+481.801 538 m 481.801 535.602 478.199 535.602 478.199 538 c 478.199 540.398
+ 481.801 540.398 481.801 538 c h
+481.801 538 m f*
+513.801 538 m 513.801 535.602 510.199 535.602 510.199 538 c 510.199 540.398
+ 513.801 540.398 513.801 538 c h
+513.801 538 m f*
+529.801 522 m 529.801 519.602 526.199 519.602 526.199 522 c 526.199 524.398
+ 529.801 524.398 529.801 522 c h
+529.801 522 m f*
+497.801 522 m 497.801 519.602 494.199 519.602 494.199 522 c 494.199 524.398
+ 497.801 524.398 497.801 522 c h
+497.801 522 m f*
+465.801 522 m 465.801 519.602 462.199 519.602 462.199 522 c 462.199 524.398
+ 465.801 524.398 465.801 522 c h
+465.801 522 m f*
+433.801 522 m 433.801 519.602 430.199 519.602 430.199 522 c 430.199 524.398
+ 433.801 524.398 433.801 522 c h
+433.801 522 m f*
+401.801 522 m 401.801 519.602 398.199 519.602 398.199 522 c 398.199 524.398
+ 401.801 524.398 401.801 522 c h
+401.801 522 m f*
+369.801 522 m 369.801 519.602 366.199 519.602 366.199 522 c 366.199 524.398
+ 369.801 524.398 369.801 522 c h
+369.801 522 m f*
+337.801 522 m 337.801 519.602 334.199 519.602 334.199 522 c 334.199 524.398
+ 337.801 524.398 337.801 522 c h
+337.801 522 m f*
+305.801 522 m 305.801 519.602 302.199 519.602 302.199 522 c 302.199 524.398
+ 305.801 524.398 305.801 522 c h
+305.801 522 m f*
+289.801 506 m 289.801 503.602 286.199 503.602 286.199 506 c 286.199 508.398
+ 289.801 508.398 289.801 506 c h
+289.801 506 m f*
+321.801 506 m 321.801 503.602 318.199 503.602 318.199 506 c 318.199 508.398
+ 321.801 508.398 321.801 506 c h
+321.801 506 m f*
+353.801 506 m 353.801 503.602 350.199 503.602 350.199 506 c 350.199 508.398
+ 353.801 508.398 353.801 506 c h
+353.801 506 m f*
+385.801 506 m 385.801 503.602 382.199 503.602 382.199 506 c 382.199 508.398
+ 385.801 508.398 385.801 506 c h
+385.801 506 m f*
+449.801 506 m 449.801 503.602 446.199 503.602 446.199 506 c 446.199 508.398
+ 449.801 508.398 449.801 506 c h
+449.801 506 m f*
+481.801 506 m 481.801 503.602 478.199 503.602 478.199 506 c 478.199 508.398
+ 481.801 508.398 481.801 506 c h
+481.801 506 m f*
+513.801 506 m 513.801 503.602 510.199 503.602 510.199 506 c 510.199 508.398
+ 513.801 508.398 513.801 506 c h
+513.801 506 m f*
+545.801 506 m 545.801 503.602 542.199 503.602 542.199 506 c 542.199 508.398
+ 545.801 508.398 545.801 506 c h
+545.801 506 m f*
+497.801 490 m 497.801 487.602 494.199 487.602 494.199 490 c 494.199 492.398
+ 497.801 492.398 497.801 490 c h
+497.801 490 m f*
+465.801 490 m 465.801 487.602 462.199 487.602 462.199 490 c 462.199 492.398
+ 465.801 492.398 465.801 490 c h
+465.801 490 m f*
+433.801 490 m 433.801 487.602 430.199 487.602 430.199 490 c 430.199 492.398
+ 433.801 492.398 433.801 490 c h
+433.801 490 m f*
+401.801 490 m 401.801 487.602 398.199 487.602 398.199 490 c 398.199 492.398
+ 401.801 492.398 401.801 490 c h
+401.801 490 m f*
+369.801 490 m 369.801 487.602 366.199 487.602 366.199 490 c 366.199 492.398
+ 369.801 492.398 369.801 490 c h
+369.801 490 m f*
+337.801 490 m 337.801 487.602 334.199 487.602 334.199 490 c 334.199 492.398
+ 337.801 492.398 337.801 490 c h
+337.801 490 m f*
+321.801 474 m 321.801 471.602 318.199 471.602 318.199 474 c 318.199 476.398
+ 321.801 476.398 321.801 474 c h
+321.801 474 m f*
+353.801 474 m 353.801 471.602 350.199 471.602 350.199 474 c 350.199 476.398
+ 353.801 476.398 353.801 474 c h
+353.801 474 m f*
+385.801 474 m 385.801 471.602 382.199 471.602 382.199 474 c 382.199 476.398
+ 385.801 476.398 385.801 474 c h
+385.801 474 m f*
+449.801 474 m 449.801 471.602 446.199 471.602 446.199 474 c 446.199 476.398
+ 449.801 476.398 449.801 474 c h
+449.801 474 m f*
+481.801 474 m 481.801 471.602 478.199 471.602 478.199 474 c 478.199 476.398
+ 481.801 476.398 481.801 474 c h
+481.801 474 m f*
+513.801 474 m 513.801 471.602 510.199 471.602 510.199 474 c 510.199 476.398
+ 513.801 476.398 513.801 474 c h
+513.801 474 m f*
+497.801 458 m 497.801 455.602 494.199 455.602 494.199 458 c 494.199 460.398
+ 497.801 460.398 497.801 458 c h
+497.801 458 m f*
+337.801 458 m 337.801 455.602 334.199 455.602 334.199 458 c 334.199 460.398
+ 337.801 460.398 337.801 458 c h
+337.801 458 m f*
+416 346 m 464 394 l 464 458 l 496 426 l 528 458 l 528 490 l 544 474 l 560
+ 490 l 560 522 l 416 666 l 416 698 l S
+416 346 m 368 394 l 368 458 l 336 426 l 304 458 l 304 490 l 288 474 l 272
+ 490 l 272 522 l 416 666 l 416 346 l S
+432 362 m 432 650 l S
+448 634 m 448 378 l S
+464 458 m 464 618 l S
+480 602 m 480 442 l S
+496 426 m 496 586 l S
+512 442 m 512 570 l S
+528 490 m 528 554 l S
+544 474 m 544 538 l S
+400 362 m 400 650 l S
+384 378 m 384 618 l S
+368 458 m 368 618 l S
+352 442 m 352 602 l S
+336 426 m 336 586 l S
+320 442 m 320 570 l S
+304 490 m 304 554 l S
+288 474 m 288 538 l S
+272 490 m 432 650 l S
+304 490 m 448 634 l S
+304 458 m 464 618 l S
+320 442 m 480 602 l S
+368 458 m 496 586 l S
+368 426 m 512 570 l S
+368 394 m 528 554 l S
+384 378 m 544 538 l S
+400 362 m 464 426 l S
+480 442 m 560 522 l S
+560 490 m 400 650 l S
+528 490 m 384 634 l S
+528 458 m 368 618 l S
+512 442 m 352 602 l S
+464 458 m 336 586 l S
+464 426 m 320 570 l S
+464 394 m 304 554 l S
+448 378 m 288 538 l S
+272 522 m 352 442 l S
+368 426 m 432 362 l S
+289.801 10 m 289.801 7.602 286.199 7.602 286.199 10 c 286.199 12.398 289.801
+ 12.398 289.801 10 c h
+289.801 10 m f*
+289.801 42 m 289.801 39.602 286.199 39.602 286.199 42 c 286.199 44.398 
+289.801 44.398 289.801 42 c h
+289.801 42 m f*
+289.801 74 m 289.801 71.602 286.199 71.602 286.199 74 c 286.199 76.398 
+289.801 76.398 289.801 74 c h
+289.801 74 m f*
+289.801 106 m 289.801 103.602 286.199 103.602 286.199 106 c 286.199 108.398
+ 289.801 108.398 289.801 106 c h
+289.801 106 m f*
+289.801 138 m 289.801 135.602 286.199 135.602 286.199 138 c 286.199 140.398
+ 289.801 140.398 289.801 138 c h
+289.801 138 m f*
+289.801 170 m 289.801 167.602 286.199 167.602 286.199 170 c 286.199 172.398
+ 289.801 172.398 289.801 170 c h
+289.801 170 m f*
+289.801 202 m 289.801 199.602 286.199 199.602 286.199 202 c 286.199 204.398
+ 289.801 204.398 289.801 202 c h
+289.801 202 m f*
+289.801 234 m 289.801 231.602 286.199 231.602 286.199 234 c 286.199 236.398
+ 289.801 236.398 289.801 234 c h
+289.801 234 m f*
+289.801 266 m 289.801 263.602 286.199 263.602 286.199 266 c 286.199 268.398
+ 289.801 268.398 289.801 266 c h
+289.801 266 m f*
+289.801 298 m 289.801 295.602 286.199 295.602 286.199 298 c 286.199 300.398
+ 289.801 300.398 289.801 298 c h
+289.801 298 m f*
+305.801 250 m 305.801 247.602 302.199 247.602 302.199 250 c 302.199 252.398
+ 305.801 252.398 305.801 250 c h
+305.801 250 m f*
+321.801 234 m 321.801 231.602 318.199 231.602 318.199 234 c 318.199 236.398
+ 321.801 236.398 321.801 234 c h
+321.801 234 m f*
+337.801 218 m 337.801 215.602 334.199 215.602 334.199 218 c 334.199 220.398
+ 337.801 220.398 337.801 218 c h
+337.801 218 m f*
+353.801 202 m 353.801 199.602 350.199 199.602 350.199 202 c 350.199 204.398
+ 353.801 204.398 353.801 202 c h
+353.801 202 m f*
+273.801 250 m 273.801 247.602 270.199 247.602 270.199 250 c 270.199 252.398
+ 273.801 252.398 273.801 250 c h
+273.801 250 m f*
+257.801 234 m 257.801 231.602 254.199 231.602 254.199 234 c 254.199 236.398
+ 257.801 236.398 257.801 234 c h
+257.801 234 m f*
+241.801 218 m 241.801 215.602 238.199 215.602 238.199 218 c 238.199 220.398
+ 241.801 220.398 241.801 218 c h
+241.801 218 m f*
+225.801 202 m 225.801 199.602 222.199 199.602 222.199 202 c 222.199 204.398
+ 225.801 204.398 225.801 202 c h
+225.801 202 m f*
+225.801 74 m 225.801 71.602 222.199 71.602 222.199 74 c 222.199 76.398 
+225.801 76.398 225.801 74 c h
+225.801 74 m f*
+225.801 106 m 225.801 103.602 222.199 103.602 222.199 106 c 222.199 108.398
+ 225.801 108.398 225.801 106 c h
+225.801 106 m f*
+225.801 138 m 225.801 135.602 222.199 135.602 222.199 138 c 222.199 140.398
+ 225.801 140.398 225.801 138 c h
+225.801 138 m f*
+225.801 170 m 225.801 167.602 222.199 167.602 222.199 170 c 222.199 172.398
+ 225.801 172.398 225.801 170 c h
+225.801 170 m f*
+353.801 170 m 353.801 167.602 350.199 167.602 350.199 170 c 350.199 172.398
+ 353.801 172.398 353.801 170 c h
+353.801 170 m f*
+353.801 138 m 353.801 135.602 350.199 135.602 350.199 138 c 350.199 140.398
+ 353.801 140.398 353.801 138 c h
+353.801 138 m f*
+353.801 106 m 353.801 103.602 350.199 103.602 350.199 106 c 350.199 108.398
+ 353.801 108.398 353.801 106 c h
+353.801 106 m f*
+353.801 74 m 353.801 71.602 350.199 71.602 350.199 74 c 350.199 76.398 
+353.801 76.398 353.801 74 c h
+353.801 74 m f*
+305.801 26 m 305.801 23.602 302.199 23.602 302.199 26 c 302.199 28.398 
+305.801 28.398 305.801 26 c h
+305.801 26 m f*
+273.801 26 m 273.801 23.602 270.199 23.602 270.199 26 c 270.199 28.398 
+273.801 28.398 273.801 26 c h
+273.801 26 m f*
+257.801 42 m 257.801 39.602 254.199 39.602 254.199 42 c 254.199 44.398 
+257.801 44.398 257.801 42 c h
+257.801 42 m f*
+321.801 42 m 321.801 39.602 318.199 39.602 318.199 42 c 318.199 44.398 
+321.801 44.398 321.801 42 c h
+321.801 42 m f*
+241.801 58 m 241.801 55.602 238.199 55.602 238.199 58 c 238.199 60.398 
+241.801 60.398 241.801 58 c h
+241.801 58 m f*
+273.801 58 m 273.801 55.602 270.199 55.602 270.199 58 c 270.199 60.398 
+273.801 60.398 273.801 58 c h
+273.801 58 m f*
+305.801 58 m 305.801 55.602 302.199 55.602 302.199 58 c 302.199 60.398 
+305.801 60.398 305.801 58 c h
+305.801 58 m f*
+337.801 58 m 337.801 55.602 334.199 55.602 334.199 58 c 334.199 60.398 
+337.801 60.398 337.801 58 c h
+337.801 58 m f*
+257.801 74 m 257.801 71.602 254.199 71.602 254.199 74 c 254.199 76.398 
+257.801 76.398 257.801 74 c h
+257.801 74 m f*
+321.801 74 m 321.801 71.602 318.199 71.602 318.199 74 c 318.199 76.398 
+321.801 76.398 321.801 74 c h
+321.801 74 m f*
+241.801 90 m 241.801 87.602 238.199 87.602 238.199 90 c 238.199 92.398 
+241.801 92.398 241.801 90 c h
+241.801 90 m f*
+273.801 90 m 273.801 87.602 270.199 87.602 270.199 90 c 270.199 92.398 
+273.801 92.398 273.801 90 c h
+273.801 90 m f*
+305.801 90 m 305.801 87.602 302.199 87.602 302.199 90 c 302.199 92.398 
+305.801 92.398 305.801 90 c h
+305.801 90 m f*
+337.801 90 m 337.801 87.602 334.199 87.602 334.199 90 c 334.199 92.398 
+337.801 92.398 337.801 90 c h
+337.801 90 m f*
+257.801 106 m 257.801 103.602 254.199 103.602 254.199 106 c 254.199 108.398
+ 257.801 108.398 257.801 106 c h
+257.801 106 m f*
+321.801 106 m 321.801 103.602 318.199 103.602 318.199 106 c 318.199 108.398
+ 321.801 108.398 321.801 106 c h
+321.801 106 m f*
+241.801 122 m 241.801 119.602 238.199 119.602 238.199 122 c 238.199 124.398
+ 241.801 124.398 241.801 122 c h
+241.801 122 m f*
+273.801 122 m 273.801 119.602 270.199 119.602 270.199 122 c 270.199 124.398
+ 273.801 124.398 273.801 122 c h
+273.801 122 m f*
+305.801 122 m 305.801 119.602 302.199 119.602 302.199 122 c 302.199 124.398
+ 305.801 124.398 305.801 122 c h
+305.801 122 m f*
+337.801 122 m 337.801 119.602 334.199 119.602 334.199 122 c 334.199 124.398
+ 337.801 124.398 337.801 122 c h
+337.801 122 m f*
+241.801 154 m 241.801 151.602 238.199 151.602 238.199 154 c 238.199 156.398
+ 241.801 156.398 241.801 154 c h
+241.801 154 m f*
+241.801 186 m 241.801 183.602 238.199 183.602 238.199 186 c 238.199 188.398
+ 241.801 188.398 241.801 186 c h
+241.801 186 m f*
+257.801 138 m 257.801 135.602 254.199 135.602 254.199 138 c 254.199 140.398
+ 257.801 140.398 257.801 138 c h
+257.801 138 m f*
+257.801 170 m 257.801 167.602 254.199 167.602 254.199 170 c 254.199 172.398
+ 257.801 172.398 257.801 170 c h
+257.801 170 m f*
+257.801 202 m 257.801 199.602 254.199 199.602 254.199 202 c 254.199 204.398
+ 257.801 204.398 257.801 202 c h
+257.801 202 m f*
+273.801 154 m 273.801 151.602 270.199 151.602 270.199 154 c 270.199 156.398
+ 273.801 156.398 273.801 154 c h
+273.801 154 m f*
+273.801 186 m 273.801 183.602 270.199 183.602 270.199 186 c 270.199 188.398
+ 273.801 188.398 273.801 186 c h
+273.801 186 m f*
+273.801 218 m 273.801 215.602 270.199 215.602 270.199 218 c 270.199 220.398
+ 273.801 220.398 273.801 218 c h
+273.801 218 m f*
+305.801 154 m 305.801 151.602 302.199 151.602 302.199 154 c 302.199 156.398
+ 305.801 156.398 305.801 154 c h
+305.801 154 m f*
+305.801 186 m 305.801 183.602 302.199 183.602 302.199 186 c 302.199 188.398
+ 305.801 188.398 305.801 186 c h
+305.801 186 m f*
+305.801 218 m 305.801 215.602 302.199 215.602 302.199 218 c 302.199 220.398
+ 305.801 220.398 305.801 218 c h
+305.801 218 m f*
+321.801 138 m 321.801 135.602 318.199 135.602 318.199 138 c 318.199 140.398
+ 321.801 140.398 321.801 138 c h
+321.801 138 m f*
+321.801 170 m 321.801 167.602 318.199 167.602 318.199 170 c 318.199 172.398
+ 321.801 172.398 321.801 170 c h
+321.801 170 m f*
+321.801 202 m 321.801 199.602 318.199 199.602 318.199 202 c 318.199 204.398
+ 321.801 204.398 321.801 202 c h
+321.801 202 m f*
+337.801 186 m 337.801 183.602 334.199 183.602 334.199 186 c 334.199 188.398
+ 337.801 188.398 337.801 186 c h
+337.801 186 m f*
+337.801 154 m 337.801 151.602 334.199 151.602 334.199 154 c 334.199 156.398
+ 337.801 156.398 337.801 154 c h
+337.801 154 m f*
+352 74 m 224 202 l S
+240 218 m 352 106 l S
+352 138 m 256 234 l S
+272 250 m 352 170 l S
+224 170 m 304 250 l S
+224 138 m 320 234 l S
+224 106 m 336 218 l S
+224 74 m 352 202 l S
+97.801 74 m 97.801 71.602 94.199 71.602 94.199 74 c 94.199 76.398 97.801
+ 76.398 97.801 74 c h
+97.801 74 m f*
+113.801 90 m 113.801 87.602 110.199 87.602 110.199 90 c 110.199 92.398 
+113.801 92.398 113.801 90 c h
+113.801 90 m f*
+81.801 90 m 81.801 87.602 78.199 87.602 78.199 90 c 78.199 92.398 81.801
+ 92.398 81.801 90 c h
+81.801 90 m f*
+97.801 106 m 97.801 103.602 94.199 103.602 94.199 106 c 94.199 108.398 
+97.801 108.398 97.801 106 c h
+97.801 106 m f*
+97.801 138 m 97.801 135.602 94.199 135.602 94.199 138 c 94.199 140.398 
+97.801 140.398 97.801 138 c h
+97.801 138 m f*
+113.801 122 m 113.801 119.602 110.199 119.602 110.199 122 c 110.199 124.398
+ 113.801 124.398 113.801 122 c h
+113.801 122 m f*
+81.801 122 m 81.801 119.602 78.199 119.602 78.199 122 c 78.199 124.398 
+81.801 124.398 81.801 122 c h
+81.801 122 m f*
+65.801 106 m 65.801 103.602 62.199 103.602 62.199 106 c 62.199 108.398 
+65.801 108.398 65.801 106 c h
+65.801 106 m f*
+65.801 138 m 65.801 135.602 62.199 135.602 62.199 138 c 62.199 140.398 
+65.801 140.398 65.801 138 c h
+65.801 138 m f*
+81.801 154 m 81.801 151.602 78.199 151.602 78.199 154 c 78.199 156.398 
+81.801 156.398 81.801 154 c h
+81.801 154 m f*
+97.801 170 m 97.801 167.602 94.199 167.602 94.199 170 c 94.199 172.398 
+97.801 172.398 97.801 170 c h
+97.801 170 m f*
+113.801 154 m 113.801 151.602 110.199 151.602 110.199 154 c 110.199 156.398
+ 113.801 156.398 113.801 154 c h
+113.801 154 m f*
+129.801 138 m 129.801 135.602 126.199 135.602 126.199 138 c 126.199 140.398
+ 129.801 140.398 129.801 138 c h
+129.801 138 m f*
+129.801 106 m 129.801 103.602 126.199 103.602 126.199 106 c 126.199 108.398
+ 129.801 108.398 129.801 106 c h
+129.801 106 m f*
+97.801 202 m 97.801 199.602 94.199 199.602 94.199 202 c 94.199 204.398 
+97.801 204.398 97.801 202 c h
+97.801 202 m f*
+64 106 m 96 74 l 128 106 l 128 138 l 96 170 l 96 202 l S
+64 106 m 64 138 l 96 170 l S
+64 106 m 112 154 l S
+80 90 m 128 138 l S
+96 74 m 96 170 l S
+112 90 m 112 154 l S
+80 90 m 80 154 l S
+112 90 m 64 138 l S
+1 J
+80 138 m 80 138 l S
+0 J
+80 154 m 128 106 l S
+288 298 m 288 266 l 352 202 l 352 74 l 288 10 l 224 74 l 224 202 l 288 
+266 l S
+240 58 m 352 170 l S
+256 42 m 352 138 l S
+272 26 m 352 106 l S
+336 58 m 224 170 l S
+224 138 m 320 42 l S
+304 26 m 224 106 l S
+288 10 m 288 266 l S
+320 42 m 320 234 l S
+304 26 m 304 250 l S
+336 58 m 336 218 l S
+272 26 m 272 250 l S
+256 42 m 256 234 l S
+240 58 m 240 218 l S
+0 1 0 rg
+481.801 330 m 481.801 327.602 478.199 327.602 478.199 330 c 478.199 332.398
+ 481.801 332.398 481.801 330 c h
+481.801 330 m f*
+481.801 330 m 481.801 327.602 478.199 327.602 478.199 330 c 478.199 332.398
+ 481.801 332.398 481.801 330 c h
+481.801 330 m f*
+289.801 298 m 289.801 295.602 286.199 295.602 286.199 298 c 286.199 300.398
+ 289.801 300.398 289.801 298 c h
+289.801 298 m f*
+97.801 202 m 97.801 199.602 94.199 199.602 94.199 202 c 94.199 204.398 
+97.801 204.398 97.801 202 c h
+97.801 202 m f*
+417.801 698 m 417.801 695.602 414.199 695.602 414.199 698 c 414.199 700.398
+ 417.801 700.398 417.801 698 c h
+417.801 698 m f*
+0.18 0.545 0.341 rg
+BT
+9.9626 0 0 -9.9626 416 297.993 Tm
+/f-0-0 1 Tf
+[(Bigger)-333(Leaf)]TJ
+-11.242045 3.21131 Td
+[(Middle)-333(Leaf)]TJ
+-22.48409 4.818019 Td
+[(Small)-333(Leaf)]TJ
+40.150162 -19.271375 Td
+(Maple)Tj
+ET
+0 g
+121.801 498 m 121.801 495.602 118.199 495.602 118.199 498 c 118.199 500.398
+ 121.801 500.398 121.801 498 c h
+121.801 498 m f*
+121.801 482 m 121.801 479.602 118.199 479.602 118.199 482 c 118.199 484.398
+ 121.801 484.398 121.801 482 c h
+121.801 482 m f*
+121.801 466 m 121.801 463.602 118.199 463.602 118.199 466 c 118.199 468.398
+ 121.801 468.398 121.801 466 c h
+121.801 466 m f*
+121.801 450 m 121.801 447.602 118.199 447.602 118.199 450 c 118.199 452.398
+ 121.801 452.398 121.801 450 c h
+121.801 450 m f*
+121.801 434 m 121.801 431.602 118.199 431.602 118.199 434 c 118.199 436.398
+ 121.801 436.398 121.801 434 c h
+121.801 434 m f*
+121.801 418 m 121.801 415.602 118.199 415.602 118.199 418 c 118.199 420.398
+ 121.801 420.398 121.801 418 c h
+121.801 418 m f*
+121.801 402 m 121.801 399.602 118.199 399.602 118.199 402 c 118.199 404.398
+ 121.801 404.398 121.801 402 c h
+121.801 402 m f*
+113.801 410 m 113.801 407.602 110.199 407.602 110.199 410 c 110.199 412.398
+ 113.801 412.398 113.801 410 c h
+113.801 410 m f*
+105.801 402 m 105.801 399.602 102.199 399.602 102.199 402 c 102.199 404.398
+ 105.801 404.398 105.801 402 c h
+105.801 402 m f*
+97.801 394 m 97.801 391.602 94.199 391.602 94.199 394 c 94.199 396.398 
+97.801 396.398 97.801 394 c h
+97.801 394 m f*
+89.801 386 m 89.801 383.602 86.199 383.602 86.199 386 c 86.199 388.398 
+89.801 388.398 89.801 386 c h
+89.801 386 m f*
+81.801 378 m 81.801 375.602 78.199 375.602 78.199 378 c 78.199 380.398 
+81.801 380.398 81.801 378 c h
+81.801 378 m f*
+73.801 386 m 73.801 383.602 70.199 383.602 70.199 386 c 70.199 388.398 
+73.801 388.398 73.801 386 c h
+73.801 386 m f*
+65.801 394 m 65.801 391.602 62.199 391.602 62.199 394 c 62.199 396.398 
+65.801 396.398 65.801 394 c h
+65.801 394 m f*
+57.801 402 m 57.801 399.602 54.199 399.602 54.199 402 c 54.199 404.398 
+57.801 404.398 57.801 402 c h
+57.801 402 m f*
+49.801 410 m 49.801 407.602 46.199 407.602 46.199 410 c 46.199 412.398 
+49.801 412.398 49.801 410 c h
+49.801 410 m f*
+41.801 418 m 41.801 415.602 38.199 415.602 38.199 418 c 38.199 420.398 
+41.801 420.398 41.801 418 c h
+41.801 418 m f*
+33.801 426 m 33.801 423.602 30.199 423.602 30.199 426 c 30.199 428.398 
+33.801 428.398 33.801 426 c h
+33.801 426 m f*
+33.801 442 m 33.801 439.602 30.199 439.602 30.199 442 c 30.199 444.398 
+33.801 444.398 33.801 442 c h
+33.801 442 m f*
+33.801 458 m 33.801 455.602 30.199 455.602 30.199 458 c 30.199 460.398 
+33.801 460.398 33.801 458 c h
+33.801 458 m f*
+33.801 474 m 33.801 471.602 30.199 471.602 30.199 474 c 30.199 476.398 
+33.801 476.398 33.801 474 c h
+33.801 474 m f*
+33.801 490 m 33.801 487.602 30.199 487.602 30.199 490 c 30.199 492.398 
+33.801 492.398 33.801 490 c h
+33.801 490 m f*
+33.801 506 m 33.801 503.602 30.199 503.602 30.199 506 c 30.199 508.398 
+33.801 508.398 33.801 506 c h
+33.801 506 m f*
+33.801 522 m 33.801 519.602 30.199 519.602 30.199 522 c 30.199 524.398 
+33.801 524.398 33.801 522 c h
+33.801 522 m f*
+33.801 538 m 33.801 535.602 30.199 535.602 30.199 538 c 30.199 540.398 
+33.801 540.398 33.801 538 c h
+33.801 538 m f*
+33.801 554 m 33.801 551.602 30.199 551.602 30.199 554 c 30.199 556.398 
+33.801 556.398 33.801 554 c h
+33.801 554 m f*
+33.801 570 m 33.801 567.602 30.199 567.602 30.199 570 c 30.199 572.398 
+33.801 572.398 33.801 570 c h
+33.801 570 m f*
+33.801 586 m 33.801 583.602 30.199 583.602 30.199 586 c 30.199 588.398 
+33.801 588.398 33.801 586 c h
+33.801 586 m f*
+33.801 602 m 33.801 599.602 30.199 599.602 30.199 602 c 30.199 604.398 
+33.801 604.398 33.801 602 c h
+33.801 602 m f*
+41.801 610 m 41.801 607.602 38.199 607.602 38.199 610 c 38.199 612.398 
+41.801 612.398 41.801 610 c h
+41.801 610 m f*
+49.801 618 m 49.801 615.602 46.199 615.602 46.199 618 c 46.199 620.398 
+49.801 620.398 49.801 618 c h
+49.801 618 m f*
+57.801 626 m 57.801 623.602 54.199 623.602 54.199 626 c 54.199 628.398 
+57.801 628.398 57.801 626 c h
+57.801 626 m f*
+65.801 634 m 65.801 631.602 62.199 631.602 62.199 634 c 62.199 636.398 
+65.801 636.398 65.801 634 c h
+65.801 634 m f*
+73.801 642 m 73.801 639.602 70.199 639.602 70.199 642 c 70.199 644.398 
+73.801 644.398 73.801 642 c h
+73.801 642 m f*
+81.801 650 m 81.801 647.602 78.199 647.602 78.199 650 c 78.199 652.398 
+81.801 652.398 81.801 650 c h
+81.801 650 m f*
+89.801 658 m 89.801 655.602 86.199 655.602 86.199 658 c 86.199 660.398 
+89.801 660.398 89.801 658 c h
+89.801 658 m f*
+97.801 666 m 97.801 663.602 94.199 663.602 94.199 666 c 94.199 668.398 
+97.801 668.398 97.801 666 c h
+97.801 666 m f*
+105.801 674 m 105.801 671.602 102.199 671.602 102.199 674 c 102.199 676.398
+ 105.801 676.398 105.801 674 c h
+105.801 674 m f*
+113.801 682 m 113.801 679.602 110.199 679.602 110.199 682 c 110.199 684.398
+ 113.801 684.398 113.801 682 c h
+113.801 682 m f*
+121.801 690 m 121.801 687.602 118.199 687.602 118.199 690 c 118.199 692.398
+ 121.801 692.398 121.801 690 c h
+121.801 690 m f*
+129.801 682 m 129.801 679.602 126.199 679.602 126.199 682 c 126.199 684.398
+ 129.801 684.398 129.801 682 c h
+129.801 682 m f*
+137.801 674 m 137.801 671.602 134.199 671.602 134.199 674 c 134.199 676.398
+ 137.801 676.398 137.801 674 c h
+137.801 674 m f*
+145.801 666 m 145.801 663.602 142.199 663.602 142.199 666 c 142.199 668.398
+ 145.801 668.398 145.801 666 c h
+145.801 666 m f*
+153.801 658 m 153.801 655.602 150.199 655.602 150.199 658 c 150.199 660.398
+ 153.801 660.398 153.801 658 c h
+153.801 658 m f*
+161.801 650 m 161.801 647.602 158.199 647.602 158.199 650 c 158.199 652.398
+ 161.801 652.398 161.801 650 c h
+161.801 650 m f*
+169.801 642 m 169.801 639.602 166.199 639.602 166.199 642 c 166.199 644.398
+ 169.801 644.398 169.801 642 c h
+169.801 642 m f*
+177.801 634 m 177.801 631.602 174.199 631.602 174.199 634 c 174.199 636.398
+ 177.801 636.398 177.801 634 c h
+177.801 634 m f*
+185.801 626 m 185.801 623.602 182.199 623.602 182.199 626 c 182.199 628.398
+ 185.801 628.398 185.801 626 c h
+185.801 626 m f*
+193.801 618 m 193.801 615.602 190.199 615.602 190.199 618 c 190.199 620.398
+ 193.801 620.398 193.801 618 c h
+193.801 618 m f*
+201.801 610 m 201.801 607.602 198.199 607.602 198.199 610 c 198.199 612.398
+ 201.801 612.398 201.801 610 c h
+201.801 610 m f*
+209.801 602 m 209.801 599.602 206.199 599.602 206.199 602 c 206.199 604.398
+ 209.801 604.398 209.801 602 c h
+209.801 602 m f*
+129.801 394 m 129.801 391.602 126.199 391.602 126.199 394 c 126.199 396.398
+ 129.801 396.398 129.801 394 c h
+129.801 394 m f*
+137.801 386 m 137.801 383.602 134.199 383.602 134.199 386 c 134.199 388.398
+ 137.801 388.398 137.801 386 c h
+137.801 386 m f*
+137.801 370 m 137.801 367.602 134.199 367.602 134.199 370 c 134.199 372.398
+ 137.801 372.398 137.801 370 c h
+137.801 370 m f*
+145.801 362 m 145.801 359.602 142.199 359.602 142.199 362 c 142.199 364.398
+ 145.801 364.398 145.801 362 c h
+145.801 362 m f*
+153.801 354 m 153.801 351.602 150.199 351.602 150.199 354 c 150.199 356.398
+ 153.801 356.398 153.801 354 c h
+153.801 354 m f*
+161.801 362 m 161.801 359.602 158.199 359.602 158.199 362 c 158.199 364.398
+ 161.801 364.398 161.801 362 c h
+161.801 362 m f*
+169.801 370 m 169.801 367.602 166.199 367.602 166.199 370 c 166.199 372.398
+ 169.801 372.398 169.801 370 c h
+169.801 370 m f*
+177.801 378 m 177.801 375.602 174.199 375.602 174.199 378 c 174.199 380.398
+ 177.801 380.398 177.801 378 c h
+177.801 378 m f*
+185.801 386 m 185.801 383.602 182.199 383.602 182.199 386 c 182.199 388.398
+ 185.801 388.398 185.801 386 c h
+185.801 386 m f*
+193.801 394 m 193.801 391.602 190.199 391.602 190.199 394 c 190.199 396.398
+ 193.801 396.398 193.801 394 c h
+193.801 394 m f*
+201.801 402 m 201.801 399.602 198.199 399.602 198.199 402 c 198.199 404.398
+ 201.801 404.398 201.801 402 c h
+201.801 402 m f*
+209.801 410 m 209.801 407.602 206.199 407.602 206.199 410 c 206.199 412.398
+ 209.801 412.398 209.801 410 c h
+209.801 410 m f*
+209.801 426 m 209.801 423.602 206.199 423.602 206.199 426 c 206.199 428.398
+ 209.801 428.398 209.801 426 c h
+209.801 426 m f*
+217.801 434 m 217.801 431.602 214.199 431.602 214.199 434 c 214.199 436.398
+ 217.801 436.398 217.801 434 c h
+217.801 434 m f*
+217.801 450 m 217.801 447.602 214.199 447.602 214.199 450 c 214.199 452.398
+ 217.801 452.398 217.801 450 c h
+217.801 450 m f*
+217.801 466 m 217.801 463.602 214.199 463.602 214.199 466 c 214.199 468.398
+ 217.801 468.398 217.801 466 c h
+217.801 466 m f*
+217.801 482 m 217.801 479.602 214.199 479.602 214.199 482 c 214.199 484.398
+ 217.801 484.398 217.801 482 c h
+217.801 482 m f*
+217.801 498 m 217.801 495.602 214.199 495.602 214.199 498 c 214.199 500.398
+ 217.801 500.398 217.801 498 c h
+217.801 498 m f*
+217.801 514 m 217.801 511.602 214.199 511.602 214.199 514 c 214.199 516.398
+ 217.801 516.398 217.801 514 c h
+217.801 514 m f*
+217.801 530 m 217.801 527.602 214.199 527.602 214.199 530 c 214.199 532.398
+ 217.801 532.398 217.801 530 c h
+217.801 530 m f*
+217.801 546 m 217.801 543.602 214.199 543.602 214.199 546 c 214.199 548.398
+ 217.801 548.398 217.801 546 c h
+217.801 546 m f*
+217.801 562 m 217.801 559.602 214.199 559.602 214.199 562 c 214.199 564.398
+ 217.801 564.398 217.801 562 c h
+217.801 562 m f*
+217.801 578 m 217.801 575.602 214.199 575.602 214.199 578 c 214.199 580.398
+ 217.801 580.398 217.801 578 c h
+217.801 578 m f*
+217.801 594 m 217.801 591.602 214.199 591.602 214.199 594 c 214.199 596.398
+ 217.801 596.398 217.801 594 c h
+217.801 594 m f*
+81.801 394 m 81.801 391.602 78.199 391.602 78.199 394 c 78.199 396.398 
+81.801 396.398 81.801 394 c h
+81.801 394 m f*
+73.801 402 m 73.801 399.602 70.199 399.602 70.199 402 c 70.199 404.398 
+73.801 404.398 73.801 402 c h
+73.801 402 m f*
+81.801 410 m 81.801 407.602 78.199 407.602 78.199 410 c 78.199 412.398 
+81.801 412.398 81.801 410 c h
+81.801 410 m f*
+89.801 402 m 89.801 399.602 86.199 399.602 86.199 402 c 86.199 404.398 
+89.801 404.398 89.801 402 c h
+89.801 402 m f*
+97.801 410 m 97.801 407.602 94.199 407.602 94.199 410 c 94.199 412.398 
+97.801 412.398 97.801 410 c h
+97.801 410 m f*
+65.801 410 m 65.801 407.602 62.199 407.602 62.199 410 c 62.199 412.398 
+65.801 412.398 65.801 410 c h
+65.801 410 m f*
+57.801 418 m 57.801 415.602 54.199 415.602 54.199 418 c 54.199 420.398 
+57.801 420.398 57.801 418 c h
+57.801 418 m f*
+73.801 418 m 73.801 415.602 70.199 415.602 70.199 418 c 70.199 420.398 
+73.801 420.398 73.801 418 c h
+73.801 418 m f*
+89.801 418 m 89.801 415.602 86.199 415.602 86.199 418 c 86.199 420.398 
+89.801 420.398 89.801 418 c h
+89.801 418 m f*
+105.801 418 m 105.801 415.602 102.199 415.602 102.199 418 c 102.199 420.398
+ 105.801 420.398 105.801 418 c h
+105.801 418 m f*
+153.801 370 m 153.801 367.602 150.199 367.602 150.199 370 c 150.199 372.398
+ 153.801 372.398 153.801 370 c h
+153.801 370 m f*
+145.801 378 m 145.801 375.602 142.199 375.602 142.199 378 c 142.199 380.398
+ 145.801 380.398 145.801 378 c h
+145.801 378 m f*
+161.801 378 m 161.801 375.602 158.199 375.602 158.199 378 c 158.199 380.398
+ 161.801 380.398 161.801 378 c h
+161.801 378 m f*
+153.801 386 m 153.801 383.602 150.199 383.602 150.199 386 c 150.199 388.398
+ 153.801 388.398 153.801 386 c h
+153.801 386 m f*
+169.801 386 m 169.801 383.602 166.199 383.602 166.199 386 c 166.199 388.398
+ 169.801 388.398 169.801 386 c h
+169.801 386 m f*
+145.801 394 m 145.801 391.602 142.199 391.602 142.199 394 c 142.199 396.398
+ 145.801 396.398 145.801 394 c h
+145.801 394 m f*
+161.801 394 m 161.801 391.602 158.199 391.602 158.199 394 c 158.199 396.398
+ 161.801 396.398 161.801 394 c h
+161.801 394 m f*
+177.801 394 m 177.801 391.602 174.199 391.602 174.199 394 c 174.199 396.398
+ 177.801 396.398 177.801 394 c h
+177.801 394 m f*
+137.801 402 m 137.801 399.602 134.199 399.602 134.199 402 c 134.199 404.398
+ 137.801 404.398 137.801 402 c h
+137.801 402 m f*
+153.801 402 m 153.801 399.602 150.199 399.602 150.199 402 c 150.199 404.398
+ 153.801 404.398 153.801 402 c h
+153.801 402 m f*
+169.801 402 m 169.801 399.602 166.199 399.602 166.199 402 c 166.199 404.398
+ 169.801 404.398 169.801 402 c h
+169.801 402 m f*
+185.801 402 m 185.801 399.602 182.199 399.602 182.199 402 c 182.199 404.398
+ 185.801 404.398 185.801 402 c h
+185.801 402 m f*
+193.801 410 m 193.801 407.602 190.199 407.602 190.199 410 c 190.199 412.398
+ 193.801 412.398 193.801 410 c h
+193.801 410 m f*
+177.801 410 m 177.801 407.602 174.199 407.602 174.199 410 c 174.199 412.398
+ 177.801 412.398 177.801 410 c h
+177.801 410 m f*
+161.801 410 m 161.801 407.602 158.199 407.602 158.199 410 c 158.199 412.398
+ 161.801 412.398 161.801 410 c h
+161.801 410 m f*
+145.801 410 m 145.801 407.602 142.199 407.602 142.199 410 c 142.199 412.398
+ 145.801 412.398 145.801 410 c h
+145.801 410 m f*
+129.801 410 m 129.801 407.602 126.199 407.602 126.199 410 c 126.199 412.398
+ 129.801 412.398 129.801 410 c h
+129.801 410 m f*
+137.801 418 m 137.801 415.602 134.199 415.602 134.199 418 c 134.199 420.398
+ 137.801 420.398 137.801 418 c h
+137.801 418 m f*
+153.801 418 m 153.801 415.602 150.199 415.602 150.199 418 c 150.199 420.398
+ 153.801 420.398 153.801 418 c h
+153.801 418 m f*
+169.801 418 m 169.801 415.602 166.199 415.602 166.199 418 c 166.199 420.398
+ 169.801 420.398 169.801 418 c h
+169.801 418 m f*
+185.801 418 m 185.801 415.602 182.199 415.602 182.199 418 c 182.199 420.398
+ 185.801 420.398 185.801 418 c h
+185.801 418 m f*
+201.801 418 m 201.801 415.602 198.199 415.602 198.199 418 c 198.199 420.398
+ 201.801 420.398 201.801 418 c h
+201.801 418 m f*
+129.801 426 m 129.801 423.602 126.199 423.602 126.199 426 c 126.199 428.398
+ 129.801 428.398 129.801 426 c h
+129.801 426 m f*
+145.801 426 m 145.801 423.602 142.199 423.602 142.199 426 c 142.199 428.398
+ 145.801 428.398 145.801 426 c h
+145.801 426 m f*
+161.801 426 m 161.801 423.602 158.199 423.602 158.199 426 c 158.199 428.398
+ 161.801 428.398 161.801 426 c h
+161.801 426 m f*
+177.801 426 m 177.801 423.602 174.199 423.602 174.199 426 c 174.199 428.398
+ 177.801 428.398 177.801 426 c h
+177.801 426 m f*
+193.801 426 m 193.801 423.602 190.199 423.602 190.199 426 c 190.199 428.398
+ 193.801 428.398 193.801 426 c h
+193.801 426 m f*
+201.801 434 m 201.801 431.602 198.199 431.602 198.199 434 c 198.199 436.398
+ 201.801 436.398 201.801 434 c h
+201.801 434 m f*
+209.801 442 m 209.801 439.602 206.199 439.602 206.199 442 c 206.199 444.398
+ 209.801 444.398 209.801 442 c h
+209.801 442 m f*
+185.801 434 m 185.801 431.602 182.199 431.602 182.199 434 c 182.199 436.398
+ 185.801 436.398 185.801 434 c h
+185.801 434 m f*
+169.801 434 m 169.801 431.602 166.199 431.602 166.199 434 c 166.199 436.398
+ 169.801 436.398 169.801 434 c h
+169.801 434 m f*
+153.801 434 m 153.801 431.602 150.199 431.602 150.199 434 c 150.199 436.398
+ 153.801 436.398 153.801 434 c h
+153.801 434 m f*
+137.801 434 m 137.801 431.602 134.199 431.602 134.199 434 c 134.199 436.398
+ 137.801 436.398 137.801 434 c h
+137.801 434 m f*
+129.801 442 m 129.801 439.602 126.199 439.602 126.199 442 c 126.199 444.398
+ 129.801 444.398 129.801 442 c h
+129.801 442 m f*
+145.801 442 m 145.801 439.602 142.199 439.602 142.199 442 c 142.199 444.398
+ 145.801 444.398 145.801 442 c h
+145.801 442 m f*
+161.801 442 m 161.801 439.602 158.199 439.602 158.199 442 c 158.199 444.398
+ 161.801 444.398 161.801 442 c h
+161.801 442 m f*
+177.801 442 m 177.801 439.602 174.199 439.602 174.199 442 c 174.199 444.398
+ 177.801 444.398 177.801 442 c h
+177.801 442 m f*
+193.801 442 m 193.801 439.602 190.199 439.602 190.199 442 c 190.199 444.398
+ 193.801 444.398 193.801 442 c h
+193.801 442 m f*
+201.801 450 m 201.801 447.602 198.199 447.602 198.199 450 c 198.199 452.398
+ 201.801 452.398 201.801 450 c h
+201.801 450 m f*
+209.801 458 m 209.801 455.602 206.199 455.602 206.199 458 c 206.199 460.398
+ 209.801 460.398 209.801 458 c h
+209.801 458 m f*
+185.801 450 m 185.801 447.602 182.199 447.602 182.199 450 c 182.199 452.398
+ 185.801 452.398 185.801 450 c h
+185.801 450 m f*
+169.801 450 m 169.801 447.602 166.199 447.602 166.199 450 c 166.199 452.398
+ 169.801 452.398 169.801 450 c h
+169.801 450 m f*
+153.801 450 m 153.801 447.602 150.199 447.602 150.199 450 c 150.199 452.398
+ 153.801 452.398 153.801 450 c h
+153.801 450 m f*
+137.801 450 m 137.801 447.602 134.199 447.602 134.199 450 c 134.199 452.398
+ 137.801 452.398 137.801 450 c h
+137.801 450 m f*
+129.801 458 m 129.801 455.602 126.199 455.602 126.199 458 c 126.199 460.398
+ 129.801 460.398 129.801 458 c h
+129.801 458 m f*
+145.801 458 m 145.801 455.602 142.199 455.602 142.199 458 c 142.199 460.398
+ 145.801 460.398 145.801 458 c h
+145.801 458 m f*
+161.801 458 m 161.801 455.602 158.199 455.602 158.199 458 c 158.199 460.398
+ 161.801 460.398 161.801 458 c h
+161.801 458 m f*
+177.801 458 m 177.801 455.602 174.199 455.602 174.199 458 c 174.199 460.398
+ 177.801 460.398 177.801 458 c h
+177.801 458 m f*
+193.801 458 m 193.801 455.602 190.199 455.602 190.199 458 c 190.199 460.398
+ 193.801 460.398 193.801 458 c h
+193.801 458 m f*
+201.801 466 m 201.801 463.602 198.199 463.602 198.199 466 c 198.199 468.398
+ 201.801 468.398 201.801 466 c h
+201.801 466 m f*
+209.801 474 m 209.801 471.602 206.199 471.602 206.199 474 c 206.199 476.398
+ 209.801 476.398 209.801 474 c h
+209.801 474 m f*
+185.801 466 m 185.801 463.602 182.199 463.602 182.199 466 c 182.199 468.398
+ 185.801 468.398 185.801 466 c h
+185.801 466 m f*
+113.801 426 m 113.801 423.602 110.199 423.602 110.199 426 c 110.199 428.398
+ 113.801 428.398 113.801 426 c h
+113.801 426 m f*
+97.801 426 m 97.801 423.602 94.199 423.602 94.199 426 c 94.199 428.398 
+97.801 428.398 97.801 426 c h
+97.801 426 m f*
+81.801 426 m 81.801 423.602 78.199 423.602 78.199 426 c 78.199 428.398 
+81.801 428.398 81.801 426 c h
+81.801 426 m f*
+65.801 426 m 65.801 423.602 62.199 423.602 62.199 426 c 62.199 428.398 
+65.801 428.398 65.801 426 c h
+65.801 426 m f*
+49.801 426 m 49.801 423.602 46.199 423.602 46.199 426 c 46.199 428.398 
+49.801 428.398 49.801 426 c h
+49.801 426 m f*
+41.801 434 m 41.801 431.602 38.199 431.602 38.199 434 c 38.199 436.398 
+41.801 436.398 41.801 434 c h
+41.801 434 m f*
+57.801 434 m 57.801 431.602 54.199 431.602 54.199 434 c 54.199 436.398 
+57.801 436.398 57.801 434 c h
+57.801 434 m f*
+73.801 434 m 73.801 431.602 70.199 431.602 70.199 434 c 70.199 436.398 
+73.801 436.398 73.801 434 c h
+73.801 434 m f*
+89.801 434 m 89.801 431.602 86.199 431.602 86.199 434 c 86.199 436.398 
+89.801 436.398 89.801 434 c h
+89.801 434 m f*
+105.801 434 m 105.801 431.602 102.199 431.602 102.199 434 c 102.199 436.398
+ 105.801 436.398 105.801 434 c h
+105.801 434 m f*
+113.801 442 m 113.801 439.602 110.199 439.602 110.199 442 c 110.199 444.398
+ 113.801 444.398 113.801 442 c h
+113.801 442 m f*
+97.801 442 m 97.801 439.602 94.199 439.602 94.199 442 c 94.199 444.398 
+97.801 444.398 97.801 442 c h
+97.801 442 m f*
+81.801 442 m 81.801 439.602 78.199 439.602 78.199 442 c 78.199 444.398 
+81.801 444.398 81.801 442 c h
+81.801 442 m f*
+65.801 442 m 65.801 439.602 62.199 439.602 62.199 442 c 62.199 444.398 
+65.801 444.398 65.801 442 c h
+65.801 442 m f*
+49.801 442 m 49.801 439.602 46.199 439.602 46.199 442 c 46.199 444.398 
+49.801 444.398 49.801 442 c h
+49.801 442 m f*
+41.801 450 m 41.801 447.602 38.199 447.602 38.199 450 c 38.199 452.398 
+41.801 452.398 41.801 450 c h
+41.801 450 m f*
+57.801 450 m 57.801 447.602 54.199 447.602 54.199 450 c 54.199 452.398 
+57.801 452.398 57.801 450 c h
+57.801 450 m f*
+73.801 450 m 73.801 447.602 70.199 447.602 70.199 450 c 70.199 452.398 
+73.801 452.398 73.801 450 c h
+73.801 450 m f*
+89.801 450 m 89.801 447.602 86.199 447.602 86.199 450 c 86.199 452.398 
+89.801 452.398 89.801 450 c h
+89.801 450 m f*
+105.801 450 m 105.801 447.602 102.199 447.602 102.199 450 c 102.199 452.398
+ 105.801 452.398 105.801 450 c h
+105.801 450 m f*
+113.801 458 m 113.801 455.602 110.199 455.602 110.199 458 c 110.199 460.398
+ 113.801 460.398 113.801 458 c h
+113.801 458 m f*
+97.801 458 m 97.801 455.602 94.199 455.602 94.199 458 c 94.199 460.398 
+97.801 460.398 97.801 458 c h
+97.801 458 m f*
+81.801 458 m 81.801 455.602 78.199 455.602 78.199 458 c 78.199 460.398 
+81.801 460.398 81.801 458 c h
+81.801 458 m f*
+65.801 458 m 65.801 455.602 62.199 455.602 62.199 458 c 62.199 460.398 
+65.801 460.398 65.801 458 c h
+65.801 458 m f*
+49.801 458 m 49.801 455.602 46.199 455.602 46.199 458 c 46.199 460.398 
+49.801 460.398 49.801 458 c h
+49.801 458 m f*
+41.801 466 m 41.801 463.602 38.199 463.602 38.199 466 c 38.199 468.398 
+41.801 468.398 41.801 466 c h
+41.801 466 m f*
+57.801 466 m 57.801 463.602 54.199 463.602 54.199 466 c 54.199 468.398 
+57.801 468.398 57.801 466 c h
+57.801 466 m f*
+73.801 466 m 73.801 463.602 70.199 463.602 70.199 466 c 70.199 468.398 
+73.801 468.398 73.801 466 c h
+73.801 466 m f*
+89.801 466 m 89.801 463.602 86.199 463.602 86.199 466 c 86.199 468.398 
+89.801 468.398 89.801 466 c h
+89.801 466 m f*
+105.801 466 m 105.801 463.602 102.199 463.602 102.199 466 c 102.199 468.398
+ 105.801 468.398 105.801 466 c h
+105.801 466 m f*
+137.801 466 m 137.801 463.602 134.199 463.602 134.199 466 c 134.199 468.398
+ 137.801 468.398 137.801 466 c h
+137.801 466 m f*
+153.801 466 m 153.801 463.602 150.199 463.602 150.199 466 c 150.199 468.398
+ 153.801 468.398 153.801 466 c h
+153.801 466 m f*
+169.801 466 m 169.801 463.602 166.199 463.602 166.199 466 c 166.199 468.398
+ 169.801 468.398 169.801 466 c h
+169.801 466 m f*
+193.801 474 m 193.801 471.602 190.199 471.602 190.199 474 c 190.199 476.398
+ 193.801 476.398 193.801 474 c h
+193.801 474 m f*
+177.801 474 m 177.801 471.602 174.199 471.602 174.199 474 c 174.199 476.398
+ 177.801 476.398 177.801 474 c h
+177.801 474 m f*
+161.801 474 m 161.801 471.602 158.199 471.602 158.199 474 c 158.199 476.398
+ 161.801 476.398 161.801 474 c h
+161.801 474 m f*
+145.801 474 m 145.801 471.602 142.199 471.602 142.199 474 c 142.199 476.398
+ 145.801 476.398 145.801 474 c h
+145.801 474 m f*
+129.801 474 m 129.801 471.602 126.199 471.602 126.199 474 c 126.199 476.398
+ 129.801 476.398 129.801 474 c h
+129.801 474 m f*
+113.801 474 m 113.801 471.602 110.199 471.602 110.199 474 c 110.199 476.398
+ 113.801 476.398 113.801 474 c h
+113.801 474 m f*
+97.801 474 m 97.801 471.602 94.199 471.602 94.199 474 c 94.199 476.398 
+97.801 476.398 97.801 474 c h
+97.801 474 m f*
+81.801 474 m 81.801 471.602 78.199 471.602 78.199 474 c 78.199 476.398 
+81.801 476.398 81.801 474 c h
+81.801 474 m f*
+65.801 474 m 65.801 471.602 62.199 471.602 62.199 474 c 62.199 476.398 
+65.801 476.398 65.801 474 c h
+65.801 474 m f*
+49.801 474 m 49.801 471.602 46.199 471.602 46.199 474 c 46.199 476.398 
+49.801 476.398 49.801 474 c h
+49.801 474 m f*
+41.801 482 m 41.801 479.602 38.199 479.602 38.199 482 c 38.199 484.398 
+41.801 484.398 41.801 482 c h
+41.801 482 m f*
+57.801 482 m 57.801 479.602 54.199 479.602 54.199 482 c 54.199 484.398 
+57.801 484.398 57.801 482 c h
+57.801 482 m f*
+73.801 482 m 73.801 479.602 70.199 479.602 70.199 482 c 70.199 484.398 
+73.801 484.398 73.801 482 c h
+73.801 482 m f*
+89.801 482 m 89.801 479.602 86.199 479.602 86.199 482 c 86.199 484.398 
+89.801 484.398 89.801 482 c h
+89.801 482 m f*
+105.801 482 m 105.801 479.602 102.199 479.602 102.199 482 c 102.199 484.398
+ 105.801 484.398 105.801 482 c h
+105.801 482 m f*
+137.801 482 m 137.801 479.602 134.199 479.602 134.199 482 c 134.199 484.398
+ 137.801 484.398 137.801 482 c h
+137.801 482 m f*
+153.801 482 m 153.801 479.602 150.199 479.602 150.199 482 c 150.199 484.398
+ 153.801 484.398 153.801 482 c h
+153.801 482 m f*
+169.801 482 m 169.801 479.602 166.199 479.602 166.199 482 c 166.199 484.398
+ 169.801 484.398 169.801 482 c h
+169.801 482 m f*
+185.801 482 m 185.801 479.602 182.199 479.602 182.199 482 c 182.199 484.398
+ 185.801 484.398 185.801 482 c h
+185.801 482 m f*
+201.801 482 m 201.801 479.602 198.199 479.602 198.199 482 c 198.199 484.398
+ 201.801 484.398 201.801 482 c h
+201.801 482 m f*
+209.801 490 m 209.801 487.602 206.199 487.602 206.199 490 c 206.199 492.398
+ 209.801 492.398 209.801 490 c h
+209.801 490 m f*
+193.801 490 m 193.801 487.602 190.199 487.602 190.199 490 c 190.199 492.398
+ 193.801 492.398 193.801 490 c h
+193.801 490 m f*
+177.801 490 m 177.801 487.602 174.199 487.602 174.199 490 c 174.199 492.398
+ 177.801 492.398 177.801 490 c h
+177.801 490 m f*
+161.801 490 m 161.801 487.602 158.199 487.602 158.199 490 c 158.199 492.398
+ 161.801 492.398 161.801 490 c h
+161.801 490 m f*
+145.801 490 m 145.801 487.602 142.199 487.602 142.199 490 c 142.199 492.398
+ 145.801 492.398 145.801 490 c h
+145.801 490 m f*
+129.801 490 m 129.801 487.602 126.199 487.602 126.199 490 c 126.199 492.398
+ 129.801 492.398 129.801 490 c h
+129.801 490 m f*
+113.801 490 m 113.801 487.602 110.199 487.602 110.199 490 c 110.199 492.398
+ 113.801 492.398 113.801 490 c h
+113.801 490 m f*
+97.801 490 m 97.801 487.602 94.199 487.602 94.199 490 c 94.199 492.398 
+97.801 492.398 97.801 490 c h
+97.801 490 m f*
+81.801 490 m 81.801 487.602 78.199 487.602 78.199 490 c 78.199 492.398 
+81.801 492.398 81.801 490 c h
+81.801 490 m f*
+65.801 490 m 65.801 487.602 62.199 487.602 62.199 490 c 62.199 492.398 
+65.801 492.398 65.801 490 c h
+65.801 490 m f*
+49.801 490 m 49.801 487.602 46.199 487.602 46.199 490 c 46.199 492.398 
+49.801 492.398 49.801 490 c h
+49.801 490 m f*
+41.801 498 m 41.801 495.602 38.199 495.602 38.199 498 c 38.199 500.398 
+41.801 500.398 41.801 498 c h
+41.801 498 m f*
+57.801 498 m 57.801 495.602 54.199 495.602 54.199 498 c 54.199 500.398 
+57.801 500.398 57.801 498 c h
+57.801 498 m f*
+73.801 498 m 73.801 495.602 70.199 495.602 70.199 498 c 70.199 500.398 
+73.801 500.398 73.801 498 c h
+73.801 498 m f*
+89.801 498 m 89.801 495.602 86.199 495.602 86.199 498 c 86.199 500.398 
+89.801 500.398 89.801 498 c h
+89.801 498 m f*
+105.801 498 m 105.801 495.602 102.199 495.602 102.199 498 c 102.199 500.398
+ 105.801 500.398 105.801 498 c h
+105.801 498 m f*
+137.801 498 m 137.801 495.602 134.199 495.602 134.199 498 c 134.199 500.398
+ 137.801 500.398 137.801 498 c h
+137.801 498 m f*
+153.801 498 m 153.801 495.602 150.199 495.602 150.199 498 c 150.199 500.398
+ 153.801 500.398 153.801 498 c h
+153.801 498 m f*
+169.801 498 m 169.801 495.602 166.199 495.602 166.199 498 c 166.199 500.398
+ 169.801 500.398 169.801 498 c h
+169.801 498 m f*
+185.801 498 m 185.801 495.602 182.199 495.602 182.199 498 c 182.199 500.398
+ 185.801 500.398 185.801 498 c h
+185.801 498 m f*
+201.801 498 m 201.801 495.602 198.199 495.602 198.199 498 c 198.199 500.398
+ 201.801 500.398 201.801 498 c h
+201.801 498 m f*
+49.801 506 m 49.801 503.602 46.199 503.602 46.199 506 c 46.199 508.398 
+49.801 508.398 49.801 506 c h
+49.801 506 m f*
+65.801 506 m 65.801 503.602 62.199 503.602 62.199 506 c 62.199 508.398 
+65.801 508.398 65.801 506 c h
+65.801 506 m f*
+81.801 506 m 81.801 503.602 78.199 503.602 78.199 506 c 78.199 508.398 
+81.801 508.398 81.801 506 c h
+81.801 506 m f*
+97.801 506 m 97.801 503.602 94.199 503.602 94.199 506 c 94.199 508.398 
+97.801 508.398 97.801 506 c h
+97.801 506 m f*
+113.801 506 m 113.801 503.602 110.199 503.602 110.199 506 c 110.199 508.398
+ 113.801 508.398 113.801 506 c h
+113.801 506 m f*
+129.801 506 m 129.801 503.602 126.199 503.602 126.199 506 c 126.199 508.398
+ 129.801 508.398 129.801 506 c h
+129.801 506 m f*
+145.801 506 m 145.801 503.602 142.199 503.602 142.199 506 c 142.199 508.398
+ 145.801 508.398 145.801 506 c h
+145.801 506 m f*
+161.801 506 m 161.801 503.602 158.199 503.602 158.199 506 c 158.199 508.398
+ 161.801 508.398 161.801 506 c h
+161.801 506 m f*
+177.801 506 m 177.801 503.602 174.199 503.602 174.199 506 c 174.199 508.398
+ 177.801 508.398 177.801 506 c h
+177.801 506 m f*
+193.801 506 m 193.801 503.602 190.199 503.602 190.199 506 c 190.199 508.398
+ 193.801 508.398 193.801 506 c h
+193.801 506 m f*
+209.801 506 m 209.801 503.602 206.199 503.602 206.199 506 c 206.199 508.398
+ 209.801 508.398 209.801 506 c h
+209.801 506 m f*
+41.801 514 m 41.801 511.602 38.199 511.602 38.199 514 c 38.199 516.398 
+41.801 516.398 41.801 514 c h
+41.801 514 m f*
+57.801 514 m 57.801 511.602 54.199 511.602 54.199 514 c 54.199 516.398 
+57.801 516.398 57.801 514 c h
+57.801 514 m f*
+73.801 514 m 73.801 511.602 70.199 511.602 70.199 514 c 70.199 516.398 
+73.801 516.398 73.801 514 c h
+73.801 514 m f*
+89.801 514 m 89.801 511.602 86.199 511.602 86.199 514 c 86.199 516.398 
+89.801 516.398 89.801 514 c h
+89.801 514 m f*
+105.801 514 m 105.801 511.602 102.199 511.602 102.199 514 c 102.199 516.398
+ 105.801 516.398 105.801 514 c h
+105.801 514 m f*
+137.801 514 m 137.801 511.602 134.199 511.602 134.199 514 c 134.199 516.398
+ 137.801 516.398 137.801 514 c h
+137.801 514 m f*
+153.801 514 m 153.801 511.602 150.199 511.602 150.199 514 c 150.199 516.398
+ 153.801 516.398 153.801 514 c h
+153.801 514 m f*
+169.801 514 m 169.801 511.602 166.199 511.602 166.199 514 c 166.199 516.398
+ 169.801 516.398 169.801 514 c h
+169.801 514 m f*
+185.801 514 m 185.801 511.602 182.199 511.602 182.199 514 c 182.199 516.398
+ 185.801 516.398 185.801 514 c h
+185.801 514 m f*
+201.801 514 m 201.801 511.602 198.199 511.602 198.199 514 c 198.199 516.398
+ 201.801 516.398 201.801 514 c h
+201.801 514 m f*
+49.801 522 m 49.801 519.602 46.199 519.602 46.199 522 c 46.199 524.398 
+49.801 524.398 49.801 522 c h
+49.801 522 m f*
+65.801 522 m 65.801 519.602 62.199 519.602 62.199 522 c 62.199 524.398 
+65.801 524.398 65.801 522 c h
+65.801 522 m f*
+81.801 522 m 81.801 519.602 78.199 519.602 78.199 522 c 78.199 524.398 
+81.801 524.398 81.801 522 c h
+81.801 522 m f*
+97.801 522 m 97.801 519.602 94.199 519.602 94.199 522 c 94.199 524.398 
+97.801 524.398 97.801 522 c h
+97.801 522 m f*
+113.801 522 m 113.801 519.602 110.199 519.602 110.199 522 c 110.199 524.398
+ 113.801 524.398 113.801 522 c h
+113.801 522 m f*
+129.801 522 m 129.801 519.602 126.199 519.602 126.199 522 c 126.199 524.398
+ 129.801 524.398 129.801 522 c h
+129.801 522 m f*
+145.801 522 m 145.801 519.602 142.199 519.602 142.199 522 c 142.199 524.398
+ 145.801 524.398 145.801 522 c h
+145.801 522 m f*
+161.801 522 m 161.801 519.602 158.199 519.602 158.199 522 c 158.199 524.398
+ 161.801 524.398 161.801 522 c h
+161.801 522 m f*
+177.801 522 m 177.801 519.602 174.199 519.602 174.199 522 c 174.199 524.398
+ 177.801 524.398 177.801 522 c h
+177.801 522 m f*
+193.801 522 m 193.801 519.602 190.199 519.602 190.199 522 c 190.199 524.398
+ 193.801 524.398 193.801 522 c h
+193.801 522 m f*
+209.801 522 m 209.801 519.602 206.199 519.602 206.199 522 c 206.199 524.398
+ 209.801 524.398 209.801 522 c h
+209.801 522 m f*
+41.801 530 m 41.801 527.602 38.199 527.602 38.199 530 c 38.199 532.398 
+41.801 532.398 41.801 530 c h
+41.801 530 m f*
+57.801 530 m 57.801 527.602 54.199 527.602 54.199 530 c 54.199 532.398 
+57.801 532.398 57.801 530 c h
+57.801 530 m f*
+73.801 530 m 73.801 527.602 70.199 527.602 70.199 530 c 70.199 532.398 
+73.801 532.398 73.801 530 c h
+73.801 530 m f*
+89.801 530 m 89.801 527.602 86.199 527.602 86.199 530 c 86.199 532.398 
+89.801 532.398 89.801 530 c h
+89.801 530 m f*
+105.801 530 m 105.801 527.602 102.199 527.602 102.199 530 c 102.199 532.398
+ 105.801 532.398 105.801 530 c h
+105.801 530 m f*
+121.801 530 m 121.801 527.602 118.199 527.602 118.199 530 c 118.199 532.398
+ 121.801 532.398 121.801 530 c h
+121.801 530 m f*
+137.801 530 m 137.801 527.602 134.199 527.602 134.199 530 c 134.199 532.398
+ 137.801 532.398 137.801 530 c h
+137.801 530 m f*
+153.801 530 m 153.801 527.602 150.199 527.602 150.199 530 c 150.199 532.398
+ 153.801 532.398 153.801 530 c h
+153.801 530 m f*
+169.801 530 m 169.801 527.602 166.199 527.602 166.199 530 c 166.199 532.398
+ 169.801 532.398 169.801 530 c h
+169.801 530 m f*
+185.801 530 m 185.801 527.602 182.199 527.602 182.199 530 c 182.199 532.398
+ 185.801 532.398 185.801 530 c h
+185.801 530 m f*
+201.801 530 m 201.801 527.602 198.199 527.602 198.199 530 c 198.199 532.398
+ 201.801 532.398 201.801 530 c h
+201.801 530 m f*
+49.801 538 m 49.801 535.602 46.199 535.602 46.199 538 c 46.199 540.398 
+49.801 540.398 49.801 538 c h
+49.801 538 m f*
+65.801 538 m 65.801 535.602 62.199 535.602 62.199 538 c 62.199 540.398 
+65.801 540.398 65.801 538 c h
+65.801 538 m f*
+81.801 538 m 81.801 535.602 78.199 535.602 78.199 538 c 78.199 540.398 
+81.801 540.398 81.801 538 c h
+81.801 538 m f*
+97.801 538 m 97.801 535.602 94.199 535.602 94.199 538 c 94.199 540.398 
+97.801 540.398 97.801 538 c h
+97.801 538 m f*
+113.801 538 m 113.801 535.602 110.199 535.602 110.199 538 c 110.199 540.398
+ 113.801 540.398 113.801 538 c h
+113.801 538 m f*
+129.801 538 m 129.801 535.602 126.199 535.602 126.199 538 c 126.199 540.398
+ 129.801 540.398 129.801 538 c h
+129.801 538 m f*
+145.801 538 m 145.801 535.602 142.199 535.602 142.199 538 c 142.199 540.398
+ 145.801 540.398 145.801 538 c h
+145.801 538 m f*
+161.801 538 m 161.801 535.602 158.199 535.602 158.199 538 c 158.199 540.398
+ 161.801 540.398 161.801 538 c h
+161.801 538 m f*
+177.801 538 m 177.801 535.602 174.199 535.602 174.199 538 c 174.199 540.398
+ 177.801 540.398 177.801 538 c h
+177.801 538 m f*
+41.801 546 m 41.801 543.602 38.199 543.602 38.199 546 c 38.199 548.398 
+41.801 548.398 41.801 546 c h
+41.801 546 m f*
+57.801 546 m 57.801 543.602 54.199 543.602 54.199 546 c 54.199 548.398 
+57.801 548.398 57.801 546 c h
+57.801 546 m f*
+73.801 546 m 73.801 543.602 70.199 543.602 70.199 546 c 70.199 548.398 
+73.801 548.398 73.801 546 c h
+73.801 546 m f*
+89.801 546 m 89.801 543.602 86.199 543.602 86.199 546 c 86.199 548.398 
+89.801 548.398 89.801 546 c h
+89.801 546 m f*
+105.801 546 m 105.801 543.602 102.199 543.602 102.199 546 c 102.199 548.398
+ 105.801 548.398 105.801 546 c h
+105.801 546 m f*
+121.801 546 m 121.801 543.602 118.199 543.602 118.199 546 c 118.199 548.398
+ 121.801 548.398 121.801 546 c h
+121.801 546 m f*
+137.801 546 m 137.801 543.602 134.199 543.602 134.199 546 c 134.199 548.398
+ 137.801 548.398 137.801 546 c h
+137.801 546 m f*
+153.801 546 m 153.801 543.602 150.199 543.602 150.199 546 c 150.199 548.398
+ 153.801 548.398 153.801 546 c h
+153.801 546 m f*
+169.801 546 m 169.801 543.602 166.199 543.602 166.199 546 c 166.199 548.398
+ 169.801 548.398 169.801 546 c h
+169.801 546 m f*
+185.801 546 m 185.801 543.602 182.199 543.602 182.199 546 c 182.199 548.398
+ 185.801 548.398 185.801 546 c h
+185.801 546 m f*
+193.801 538 m 193.801 535.602 190.199 535.602 190.199 538 c 190.199 540.398
+ 193.801 540.398 193.801 538 c h
+193.801 538 m f*
+201.801 546 m 201.801 543.602 198.199 543.602 198.199 546 c 198.199 548.398
+ 201.801 548.398 201.801 546 c h
+201.801 546 m f*
+209.801 538 m 209.801 535.602 206.199 535.602 206.199 538 c 206.199 540.398
+ 209.801 540.398 209.801 538 c h
+209.801 538 m f*
+49.801 554 m 49.801 551.602 46.199 551.602 46.199 554 c 46.199 556.398 
+49.801 556.398 49.801 554 c h
+49.801 554 m f*
+65.801 554 m 65.801 551.602 62.199 551.602 62.199 554 c 62.199 556.398 
+65.801 556.398 65.801 554 c h
+65.801 554 m f*
+81.801 554 m 81.801 551.602 78.199 551.602 78.199 554 c 78.199 556.398 
+81.801 556.398 81.801 554 c h
+81.801 554 m f*
+97.801 554 m 97.801 551.602 94.199 551.602 94.199 554 c 94.199 556.398 
+97.801 556.398 97.801 554 c h
+97.801 554 m f*
+113.801 554 m 113.801 551.602 110.199 551.602 110.199 554 c 110.199 556.398
+ 113.801 556.398 113.801 554 c h
+113.801 554 m f*
+129.801 554 m 129.801 551.602 126.199 551.602 126.199 554 c 126.199 556.398
+ 129.801 556.398 129.801 554 c h
+129.801 554 m f*
+145.801 554 m 145.801 551.602 142.199 551.602 142.199 554 c 142.199 556.398
+ 145.801 556.398 145.801 554 c h
+145.801 554 m f*
+161.801 554 m 161.801 551.602 158.199 551.602 158.199 554 c 158.199 556.398
+ 161.801 556.398 161.801 554 c h
+161.801 554 m f*
+177.801 554 m 177.801 551.602 174.199 551.602 174.199 554 c 174.199 556.398
+ 177.801 556.398 177.801 554 c h
+177.801 554 m f*
+193.801 554 m 193.801 551.602 190.199 551.602 190.199 554 c 190.199 556.398
+ 193.801 556.398 193.801 554 c h
+193.801 554 m f*
+209.801 554 m 209.801 551.602 206.199 551.602 206.199 554 c 206.199 556.398
+ 209.801 556.398 209.801 554 c h
+209.801 554 m f*
+41.801 562 m 41.801 559.602 38.199 559.602 38.199 562 c 38.199 564.398 
+41.801 564.398 41.801 562 c h
+41.801 562 m f*
+57.801 562 m 57.801 559.602 54.199 559.602 54.199 562 c 54.199 564.398 
+57.801 564.398 57.801 562 c h
+57.801 562 m f*
+73.801 562 m 73.801 559.602 70.199 559.602 70.199 562 c 70.199 564.398 
+73.801 564.398 73.801 562 c h
+73.801 562 m f*
+89.801 562 m 89.801 559.602 86.199 559.602 86.199 562 c 86.199 564.398 
+89.801 564.398 89.801 562 c h
+89.801 562 m f*
+105.801 562 m 105.801 559.602 102.199 559.602 102.199 562 c 102.199 564.398
+ 105.801 564.398 105.801 562 c h
+105.801 562 m f*
+121.801 562 m 121.801 559.602 118.199 559.602 118.199 562 c 118.199 564.398
+ 121.801 564.398 121.801 562 c h
+121.801 562 m f*
+137.801 562 m 137.801 559.602 134.199 559.602 134.199 562 c 134.199 564.398
+ 137.801 564.398 137.801 562 c h
+137.801 562 m f*
+153.801 562 m 153.801 559.602 150.199 559.602 150.199 562 c 150.199 564.398
+ 153.801 564.398 153.801 562 c h
+153.801 562 m f*
+169.801 562 m 169.801 559.602 166.199 559.602 166.199 562 c 166.199 564.398
+ 169.801 564.398 169.801 562 c h
+169.801 562 m f*
+185.801 562 m 185.801 559.602 182.199 559.602 182.199 562 c 182.199 564.398
+ 185.801 564.398 185.801 562 c h
+185.801 562 m f*
+201.801 562 m 201.801 559.602 198.199 559.602 198.199 562 c 198.199 564.398
+ 201.801 564.398 201.801 562 c h
+201.801 562 m f*
+209.801 570 m 209.801 567.602 206.199 567.602 206.199 570 c 206.199 572.398
+ 209.801 572.398 209.801 570 c h
+209.801 570 m f*
+193.801 570 m 193.801 567.602 190.199 567.602 190.199 570 c 190.199 572.398
+ 193.801 572.398 193.801 570 c h
+193.801 570 m f*
+177.801 570 m 177.801 567.602 174.199 567.602 174.199 570 c 174.199 572.398
+ 177.801 572.398 177.801 570 c h
+177.801 570 m f*
+161.801 570 m 161.801 567.602 158.199 567.602 158.199 570 c 158.199 572.398
+ 161.801 572.398 161.801 570 c h
+161.801 570 m f*
+145.801 570 m 145.801 567.602 142.199 567.602 142.199 570 c 142.199 572.398
+ 145.801 572.398 145.801 570 c h
+145.801 570 m f*
+129.801 570 m 129.801 567.602 126.199 567.602 126.199 570 c 126.199 572.398
+ 129.801 572.398 129.801 570 c h
+129.801 570 m f*
+113.801 570 m 113.801 567.602 110.199 567.602 110.199 570 c 110.199 572.398
+ 113.801 572.398 113.801 570 c h
+113.801 570 m f*
+97.801 570 m 97.801 567.602 94.199 567.602 94.199 570 c 94.199 572.398 
+97.801 572.398 97.801 570 c h
+97.801 570 m f*
+81.801 570 m 81.801 567.602 78.199 567.602 78.199 570 c 78.199 572.398 
+81.801 572.398 81.801 570 c h
+81.801 570 m f*
+65.801 570 m 65.801 567.602 62.199 567.602 62.199 570 c 62.199 572.398 
+65.801 572.398 65.801 570 c h
+65.801 570 m f*
+49.801 570 m 49.801 567.602 46.199 567.602 46.199 570 c 46.199 572.398 
+49.801 572.398 49.801 570 c h
+49.801 570 m f*
+41.801 578 m 41.801 575.602 38.199 575.602 38.199 578 c 38.199 580.398 
+41.801 580.398 41.801 578 c h
+41.801 578 m f*
+57.801 578 m 57.801 575.602 54.199 575.602 54.199 578 c 54.199 580.398 
+57.801 580.398 57.801 578 c h
+57.801 578 m f*
+73.801 578 m 73.801 575.602 70.199 575.602 70.199 578 c 70.199 580.398 
+73.801 580.398 73.801 578 c h
+73.801 578 m f*
+89.801 578 m 89.801 575.602 86.199 575.602 86.199 578 c 86.199 580.398 
+89.801 580.398 89.801 578 c h
+89.801 578 m f*
+105.801 578 m 105.801 575.602 102.199 575.602 102.199 578 c 102.199 580.398
+ 105.801 580.398 105.801 578 c h
+105.801 578 m f*
+121.801 578 m 121.801 575.602 118.199 575.602 118.199 578 c 118.199 580.398
+ 121.801 580.398 121.801 578 c h
+121.801 578 m f*
+137.801 578 m 137.801 575.602 134.199 575.602 134.199 578 c 134.199 580.398
+ 137.801 580.398 137.801 578 c h
+137.801 578 m f*
+153.801 578 m 153.801 575.602 150.199 575.602 150.199 578 c 150.199 580.398
+ 153.801 580.398 153.801 578 c h
+153.801 578 m f*
+169.801 578 m 169.801 575.602 166.199 575.602 166.199 578 c 166.199 580.398
+ 169.801 580.398 169.801 578 c h
+169.801 578 m f*
+185.801 578 m 185.801 575.602 182.199 575.602 182.199 578 c 182.199 580.398
+ 185.801 580.398 185.801 578 c h
+185.801 578 m f*
+201.801 578 m 201.801 575.602 198.199 575.602 198.199 578 c 198.199 580.398
+ 201.801 580.398 201.801 578 c h
+201.801 578 m f*
+209.801 586 m 209.801 583.602 206.199 583.602 206.199 586 c 206.199 588.398
+ 209.801 588.398 209.801 586 c h
+209.801 586 m f*
+193.801 586 m 193.801 583.602 190.199 583.602 190.199 586 c 190.199 588.398
+ 193.801 588.398 193.801 586 c h
+193.801 586 m f*
+177.801 586 m 177.801 583.602 174.199 583.602 174.199 586 c 174.199 588.398
+ 177.801 588.398 177.801 586 c h
+177.801 586 m f*
+161.801 586 m 161.801 583.602 158.199 583.602 158.199 586 c 158.199 588.398
+ 161.801 588.398 161.801 586 c h
+161.801 586 m f*
+145.801 586 m 145.801 583.602 142.199 583.602 142.199 586 c 142.199 588.398
+ 145.801 588.398 145.801 586 c h
+145.801 586 m f*
+129.801 586 m 129.801 583.602 126.199 583.602 126.199 586 c 126.199 588.398
+ 129.801 588.398 129.801 586 c h
+129.801 586 m f*
+113.801 586 m 113.801 583.602 110.199 583.602 110.199 586 c 110.199 588.398
+ 113.801 588.398 113.801 586 c h
+113.801 586 m f*
+97.801 586 m 97.801 583.602 94.199 583.602 94.199 586 c 94.199 588.398 
+97.801 588.398 97.801 586 c h
+97.801 586 m f*
+81.801 586 m 81.801 583.602 78.199 583.602 78.199 586 c 78.199 588.398 
+81.801 588.398 81.801 586 c h
+81.801 586 m f*
+65.801 586 m 65.801 583.602 62.199 583.602 62.199 586 c 62.199 588.398 
+65.801 588.398 65.801 586 c h
+65.801 586 m f*
+49.801 586 m 49.801 583.602 46.199 583.602 46.199 586 c 46.199 588.398 
+49.801 588.398 49.801 586 c h
+49.801 586 m f*
+41.801 594 m 41.801 591.602 38.199 591.602 38.199 594 c 38.199 596.398 
+41.801 596.398 41.801 594 c h
+41.801 594 m f*
+57.801 594 m 57.801 591.602 54.199 591.602 54.199 594 c 54.199 596.398 
+57.801 596.398 57.801 594 c h
+57.801 594 m f*
+73.801 594 m 73.801 591.602 70.199 591.602 70.199 594 c 70.199 596.398 
+73.801 596.398 73.801 594 c h
+73.801 594 m f*
+89.801 594 m 89.801 591.602 86.199 591.602 86.199 594 c 86.199 596.398 
+89.801 596.398 89.801 594 c h
+89.801 594 m f*
+105.801 594 m 105.801 591.602 102.199 591.602 102.199 594 c 102.199 596.398
+ 105.801 596.398 105.801 594 c h
+105.801 594 m f*
+121.801 594 m 121.801 591.602 118.199 591.602 118.199 594 c 118.199 596.398
+ 121.801 596.398 121.801 594 c h
+121.801 594 m f*
+137.801 594 m 137.801 591.602 134.199 591.602 134.199 594 c 134.199 596.398
+ 137.801 596.398 137.801 594 c h
+137.801 594 m f*
+153.801 594 m 153.801 591.602 150.199 591.602 150.199 594 c 150.199 596.398
+ 153.801 596.398 153.801 594 c h
+153.801 594 m f*
+169.801 594 m 169.801 591.602 166.199 591.602 166.199 594 c 166.199 596.398
+ 169.801 596.398 169.801 594 c h
+169.801 594 m f*
+185.801 594 m 185.801 591.602 182.199 591.602 182.199 594 c 182.199 596.398
+ 185.801 596.398 185.801 594 c h
+185.801 594 m f*
+201.801 594 m 201.801 591.602 198.199 591.602 198.199 594 c 198.199 596.398
+ 201.801 596.398 201.801 594 c h
+201.801 594 m f*
+49.801 602 m 49.801 599.602 46.199 599.602 46.199 602 c 46.199 604.398 
+49.801 604.398 49.801 602 c h
+49.801 602 m f*
+65.801 602 m 65.801 599.602 62.199 599.602 62.199 602 c 62.199 604.398 
+65.801 604.398 65.801 602 c h
+65.801 602 m f*
+81.801 602 m 81.801 599.602 78.199 599.602 78.199 602 c 78.199 604.398 
+81.801 604.398 81.801 602 c h
+81.801 602 m f*
+97.801 602 m 97.801 599.602 94.199 599.602 94.199 602 c 94.199 604.398 
+97.801 604.398 97.801 602 c h
+97.801 602 m f*
+113.801 602 m 113.801 599.602 110.199 599.602 110.199 602 c 110.199 604.398
+ 113.801 604.398 113.801 602 c h
+113.801 602 m f*
+129.801 602 m 129.801 599.602 126.199 599.602 126.199 602 c 126.199 604.398
+ 129.801 604.398 129.801 602 c h
+129.801 602 m f*
+145.801 602 m 145.801 599.602 142.199 599.602 142.199 602 c 142.199 604.398
+ 145.801 604.398 145.801 602 c h
+145.801 602 m f*
+161.801 602 m 161.801 599.602 158.199 599.602 158.199 602 c 158.199 604.398
+ 161.801 604.398 161.801 602 c h
+161.801 602 m f*
+177.801 602 m 177.801 599.602 174.199 599.602 174.199 602 c 174.199 604.398
+ 177.801 604.398 177.801 602 c h
+177.801 602 m f*
+193.801 602 m 193.801 599.602 190.199 599.602 190.199 602 c 190.199 604.398
+ 193.801 604.398 193.801 602 c h
+193.801 602 m f*
+57.801 610 m 57.801 607.602 54.199 607.602 54.199 610 c 54.199 612.398 
+57.801 612.398 57.801 610 c h
+57.801 610 m f*
+73.801 610 m 73.801 607.602 70.199 607.602 70.199 610 c 70.199 612.398 
+73.801 612.398 73.801 610 c h
+73.801 610 m f*
+89.801 610 m 89.801 607.602 86.199 607.602 86.199 610 c 86.199 612.398 
+89.801 612.398 89.801 610 c h
+89.801 610 m f*
+105.801 610 m 105.801 607.602 102.199 607.602 102.199 610 c 102.199 612.398
+ 105.801 612.398 105.801 610 c h
+105.801 610 m f*
+121.801 610 m 121.801 607.602 118.199 607.602 118.199 610 c 118.199 612.398
+ 121.801 612.398 121.801 610 c h
+121.801 610 m f*
+137.801 610 m 137.801 607.602 134.199 607.602 134.199 610 c 134.199 612.398
+ 137.801 612.398 137.801 610 c h
+137.801 610 m f*
+153.801 610 m 153.801 607.602 150.199 607.602 150.199 610 c 150.199 612.398
+ 153.801 612.398 153.801 610 c h
+153.801 610 m f*
+169.801 610 m 169.801 607.602 166.199 607.602 166.199 610 c 166.199 612.398
+ 169.801 612.398 169.801 610 c h
+169.801 610 m f*
+185.801 610 m 185.801 607.602 182.199 607.602 182.199 610 c 182.199 612.398
+ 185.801 612.398 185.801 610 c h
+185.801 610 m f*
+65.801 618 m 65.801 615.602 62.199 615.602 62.199 618 c 62.199 620.398 
+65.801 620.398 65.801 618 c h
+65.801 618 m f*
+81.801 618 m 81.801 615.602 78.199 615.602 78.199 618 c 78.199 620.398 
+81.801 620.398 81.801 618 c h
+81.801 618 m f*
+97.801 618 m 97.801 615.602 94.199 615.602 94.199 618 c 94.199 620.398 
+97.801 620.398 97.801 618 c h
+97.801 618 m f*
+113.801 618 m 113.801 615.602 110.199 615.602 110.199 618 c 110.199 620.398
+ 113.801 620.398 113.801 618 c h
+113.801 618 m f*
+129.801 618 m 129.801 615.602 126.199 615.602 126.199 618 c 126.199 620.398
+ 129.801 620.398 129.801 618 c h
+129.801 618 m f*
+145.801 618 m 145.801 615.602 142.199 615.602 142.199 618 c 142.199 620.398
+ 145.801 620.398 145.801 618 c h
+145.801 618 m f*
+161.801 618 m 161.801 615.602 158.199 615.602 158.199 618 c 158.199 620.398
+ 161.801 620.398 161.801 618 c h
+161.801 618 m f*
+177.801 618 m 177.801 615.602 174.199 615.602 174.199 618 c 174.199 620.398
+ 177.801 620.398 177.801 618 c h
+177.801 618 m f*
+73.801 626 m 73.801 623.602 70.199 623.602 70.199 626 c 70.199 628.398 
+73.801 628.398 73.801 626 c h
+73.801 626 m f*
+89.801 626 m 89.801 623.602 86.199 623.602 86.199 626 c 86.199 628.398 
+89.801 628.398 89.801 626 c h
+89.801 626 m f*
+105.801 626 m 105.801 623.602 102.199 623.602 102.199 626 c 102.199 628.398
+ 105.801 628.398 105.801 626 c h
+105.801 626 m f*
+121.801 626 m 121.801 623.602 118.199 623.602 118.199 626 c 118.199 628.398
+ 121.801 628.398 121.801 626 c h
+121.801 626 m f*
+137.801 626 m 137.801 623.602 134.199 623.602 134.199 626 c 134.199 628.398
+ 137.801 628.398 137.801 626 c h
+137.801 626 m f*
+153.801 626 m 153.801 623.602 150.199 623.602 150.199 626 c 150.199 628.398
+ 153.801 628.398 153.801 626 c h
+153.801 626 m f*
+169.801 626 m 169.801 623.602 166.199 623.602 166.199 626 c 166.199 628.398
+ 169.801 628.398 169.801 626 c h
+169.801 626 m f*
+161.801 634 m 161.801 631.602 158.199 631.602 158.199 634 c 158.199 636.398
+ 161.801 636.398 161.801 634 c h
+161.801 634 m f*
+145.801 634 m 145.801 631.602 142.199 631.602 142.199 634 c 142.199 636.398
+ 145.801 636.398 145.801 634 c h
+145.801 634 m f*
+129.801 634 m 129.801 631.602 126.199 631.602 126.199 634 c 126.199 636.398
+ 129.801 636.398 129.801 634 c h
+129.801 634 m f*
+113.801 634 m 113.801 631.602 110.199 631.602 110.199 634 c 110.199 636.398
+ 113.801 636.398 113.801 634 c h
+113.801 634 m f*
+97.801 634 m 97.801 631.602 94.199 631.602 94.199 634 c 94.199 636.398 
+97.801 636.398 97.801 634 c h
+97.801 634 m f*
+81.801 634 m 81.801 631.602 78.199 631.602 78.199 634 c 78.199 636.398 
+81.801 636.398 81.801 634 c h
+81.801 634 m f*
+89.801 642 m 89.801 639.602 86.199 639.602 86.199 642 c 86.199 644.398 
+89.801 644.398 89.801 642 c h
+89.801 642 m f*
+105.801 642 m 105.801 639.602 102.199 639.602 102.199 642 c 102.199 644.398
+ 105.801 644.398 105.801 642 c h
+105.801 642 m f*
+121.801 642 m 121.801 639.602 118.199 639.602 118.199 642 c 118.199 644.398
+ 121.801 644.398 121.801 642 c h
+121.801 642 m f*
+137.801 642 m 137.801 639.602 134.199 639.602 134.199 642 c 134.199 644.398
+ 137.801 644.398 137.801 642 c h
+137.801 642 m f*
+153.801 642 m 153.801 639.602 150.199 639.602 150.199 642 c 150.199 644.398
+ 153.801 644.398 153.801 642 c h
+153.801 642 m f*
+145.801 650 m 145.801 647.602 142.199 647.602 142.199 650 c 142.199 652.398
+ 145.801 652.398 145.801 650 c h
+145.801 650 m f*
+129.801 650 m 129.801 647.602 126.199 647.602 126.199 650 c 126.199 652.398
+ 129.801 652.398 129.801 650 c h
+129.801 650 m f*
+113.801 650 m 113.801 647.602 110.199 647.602 110.199 650 c 110.199 652.398
+ 113.801 652.398 113.801 650 c h
+113.801 650 m f*
+97.801 650 m 97.801 647.602 94.199 647.602 94.199 650 c 94.199 652.398 
+97.801 652.398 97.801 650 c h
+97.801 650 m f*
+105.801 658 m 105.801 655.602 102.199 655.602 102.199 658 c 102.199 660.398
+ 105.801 660.398 105.801 658 c h
+105.801 658 m f*
+121.801 658 m 121.801 655.602 118.199 655.602 118.199 658 c 118.199 660.398
+ 121.801 660.398 121.801 658 c h
+121.801 658 m f*
+137.801 658 m 137.801 655.602 134.199 655.602 134.199 658 c 134.199 660.398
+ 137.801 660.398 137.801 658 c h
+137.801 658 m f*
+113.801 666 m 113.801 663.602 110.199 663.602 110.199 666 c 110.199 668.398
+ 113.801 668.398 113.801 666 c h
+113.801 666 m f*
+129.801 666 m 129.801 663.602 126.199 663.602 126.199 666 c 126.199 668.398
+ 129.801 668.398 129.801 666 c h
+129.801 666 m f*
+121.801 674 m 121.801 671.602 118.199 671.602 118.199 674 c 118.199 676.398
+ 121.801 676.398 121.801 674 c h
+121.801 674 m f*
+112 410 m 136 386 l S
+136 386 m 136 370 l 152 354 l 208 410 l 208 426 l 216 434 l 216 594 l 120
+ 690 l 32 602 l 32 426 l 80 378 l 112 410 l 112 682 l S
+144 362 m 208 426 l S
+136 370 m 216 450 l S
+136 386 m 216 466 l S
+128 394 m 216 482 l S
+120 402 m 216 498 l S
+112 410 m 216 514 l S
+72 386 m 216 530 l S
+64 394 m 216 546 l S
+56 402 m 216 562 l S
+48 410 m 216 578 l S
+40 418 m 216 594 l S
+32 426 m 208 602 l S
+32 442 m 200 610 l S
+32 458 m 192 618 l S
+32 474 m 184 626 l S
+32 490 m 176 634 l S
+32 506 m 168 642 l S
+32 522 m 160 650 l S
+32 538 m 152 658 l S
+1 J
+32 562 m 32 562 l S
+0 J
+32 554 m 144 666 l S
+32 570 m 136 674 l S
+32 586 m 128 682 l S
+112 682 m 216 578 l S
+104 674 m 216 562 l S
+96 666 m 216 546 l S
+88 658 m 216 530 l S
+80 650 m 216 514 l S
+72 642 m 216 498 l S
+64 634 m 216 482 l S
+216 466 m 56 626 l S
+48 618 m 216 450 l S
+216 434 m 40 610 l S
+32 602 m 208 426 l S
+208 410 m 32 586 l S
+32 570 m 200 402 l S
+192 394 m 32 554 l S
+32 538 m 184 386 l S
+176 378 m 32 522 l S
+32 506 m 168 370 l S
+160 362 m 136 386 l S
+112 410 m 32 490 l S
+32 474 m 104 402 l S
+96 394 m 32 458 l S
+1 J
+32 434 m 32 434 l S
+0 J
+32 442 m 88 386 l S
+80 378 m 80 650 l S
+88 386 m 88 658 l S
+96 394 m 96 666 l S
+104 402 m 104 674 l S
+72 386 m 72 642 l S
+64 394 m 64 634 l S
+56 402 m 56 626 l S
+48 410 m 48 618 l S
+40 418 m 40 610 l S
+120 690 m 120 402 l S
+128 394 m 128 682 l S
+136 386 m 136 674 l S
+144 362 m 144 666 l S
+152 354 m 152 658 l S
+160 362 m 160 650 l S
+168 370 m 168 642 l S
+176 378 m 176 634 l S
+184 386 m 184 626 l S
+192 394 m 192 618 l S
+200 402 m 200 610 l S
+208 426 m 208 602 l S
+0 1 0 rg
+121.801 514 m 121.801 511.602 118.199 511.602 118.199 514 c 118.199 516.398
+ 121.801 516.398 121.801 514 c h
+121.801 514 m f*
+0.18 0.545 0.341 rg
+BT
+9.9626 0 0 -9.9626 112 713.993 Tm
+/f-0-0 1 Tf
+(Asymmetric)Tj
+ET
+Q Q
+showpage
+%%Trailer
+end
+%%EOF
diff --git a/Latex/bilder/intermediate_node_constraint_illustration-eps-converted-to.pdf b/Latex/bilder/intermediate_node_constraint_illustration-eps-converted-to.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..29342693e38d4dcb534c8770f3eaa9f4bcee1790
Binary files /dev/null and b/Latex/bilder/intermediate_node_constraint_illustration-eps-converted-to.pdf differ
diff --git a/Latex/bilder/mtz_illustration-eps-converted-to.pdf b/Latex/bilder/mtz_illustration-eps-converted-to.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..23427bb445a15f0b1f95f20ee98944c3f06893b6
Binary files /dev/null and b/Latex/bilder/mtz_illustration-eps-converted-to.pdf differ
diff --git a/Latex/bilder/reduce_path_length_illustration-eps-converted-to.pdf b/Latex/bilder/reduce_path_length_illustration-eps-converted-to.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..58774b41d23cee01ce13e938db26e9f77a29bc76
Binary files /dev/null and b/Latex/bilder/reduce_path_length_illustration-eps-converted-to.pdf differ
diff --git a/Latex/bilder/test3.ipe b/Latex/bilder/test3.ipe
new file mode 100644
index 0000000000000000000000000000000000000000..6d0c7981293bbf2e0c14e3f6c3559b2e99b19ba9
--- /dev/null
+++ b/Latex/bilder/test3.ipe
@@ -0,0 +1,1244 @@
+<?xml version="1.0"?>
+<!DOCTYPE ipe SYSTEM "ipe.dtd">
+<ipe version="70212" creator="Ipe 7.2.13">
+<info created="D:20200201111026" modified="D:20200201113445"/>
+<ipestyle name="basic">
+<symbol name="arrow/arc(spx)">
+<path stroke="sym-stroke" fill="sym-stroke" pen="sym-pen">
+0 0 m
+-1 0.333 l
+-1 -0.333 l
+h
+</path>
+</symbol>
+<symbol name="arrow/farc(spx)">
+<path stroke="sym-stroke" fill="white" pen="sym-pen">
+0 0 m
+-1 0.333 l
+-1 -0.333 l
+h
+</path>
+</symbol>
+<symbol name="arrow/ptarc(spx)">
+<path stroke="sym-stroke" fill="sym-stroke" pen="sym-pen">
+0 0 m
+-1 0.333 l
+-0.8 0 l
+-1 -0.333 l
+h
+</path>
+</symbol>
+<symbol name="arrow/fptarc(spx)">
+<path stroke="sym-stroke" fill="white" pen="sym-pen">
+0 0 m
+-1 0.333 l
+-0.8 0 l
+-1 -0.333 l
+h
+</path>
+</symbol>
+<symbol name="mark/circle(sx)" transformations="translations">
+<path fill="sym-stroke">
+0.6 0 0 0.6 0 0 e
+0.4 0 0 0.4 0 0 e
+</path>
+</symbol>
+<symbol name="mark/disk(sx)" transformations="translations">
+<path fill="sym-stroke">
+0.6 0 0 0.6 0 0 e
+</path>
+</symbol>
+<symbol name="mark/fdisk(sfx)" transformations="translations">
+<group>
+<path fill="sym-fill">
+0.5 0 0 0.5 0 0 e
+</path>
+<path fill="sym-stroke" fillrule="eofill">
+0.6 0 0 0.6 0 0 e
+0.4 0 0 0.4 0 0 e
+</path>
+</group>
+</symbol>
+<symbol name="mark/box(sx)" transformations="translations">
+<path fill="sym-stroke" fillrule="eofill">
+-0.6 -0.6 m
+0.6 -0.6 l
+0.6 0.6 l
+-0.6 0.6 l
+h
+-0.4 -0.4 m
+0.4 -0.4 l
+0.4 0.4 l
+-0.4 0.4 l
+h
+</path>
+</symbol>
+<symbol name="mark/square(sx)" transformations="translations">
+<path fill="sym-stroke">
+-0.6 -0.6 m
+0.6 -0.6 l
+0.6 0.6 l
+-0.6 0.6 l
+h
+</path>
+</symbol>
+<symbol name="mark/fsquare(sfx)" transformations="translations">
+<group>
+<path fill="sym-fill">
+-0.5 -0.5 m
+0.5 -0.5 l
+0.5 0.5 l
+-0.5 0.5 l
+h
+</path>
+<path fill="sym-stroke" fillrule="eofill">
+-0.6 -0.6 m
+0.6 -0.6 l
+0.6 0.6 l
+-0.6 0.6 l
+h
+-0.4 -0.4 m
+0.4 -0.4 l
+0.4 0.4 l
+-0.4 0.4 l
+h
+</path>
+</group>
+</symbol>
+<symbol name="mark/cross(sx)" transformations="translations">
+<group>
+<path fill="sym-stroke">
+-0.43 -0.57 m
+0.57 0.43 l
+0.43 0.57 l
+-0.57 -0.43 l
+h
+</path>
+<path fill="sym-stroke">
+-0.43 0.57 m
+0.57 -0.43 l
+0.43 -0.57 l
+-0.57 0.43 l
+h
+</path>
+</group>
+</symbol>
+<symbol name="arrow/fnormal(spx)">
+<path stroke="sym-stroke" fill="white" pen="sym-pen">
+0 0 m
+-1 0.333 l
+-1 -0.333 l
+h
+</path>
+</symbol>
+<symbol name="arrow/pointed(spx)">
+<path stroke="sym-stroke" fill="sym-stroke" pen="sym-pen">
+0 0 m
+-1 0.333 l
+-0.8 0 l
+-1 -0.333 l
+h
+</path>
+</symbol>
+<symbol name="arrow/fpointed(spx)">
+<path stroke="sym-stroke" fill="white" pen="sym-pen">
+0 0 m
+-1 0.333 l
+-0.8 0 l
+-1 -0.333 l
+h
+</path>
+</symbol>
+<symbol name="arrow/linear(spx)">
+<path stroke="sym-stroke" pen="sym-pen">
+-1 0.333 m
+0 0 l
+-1 -0.333 l
+</path>
+</symbol>
+<symbol name="arrow/fdouble(spx)">
+<path stroke="sym-stroke" fill="white" pen="sym-pen">
+0 0 m
+-1 0.333 l
+-1 -0.333 l
+h
+-1 0 m
+-2 0.333 l
+-2 -0.333 l
+h
+</path>
+</symbol>
+<symbol name="arrow/double(spx)">
+<path stroke="sym-stroke" fill="sym-stroke" pen="sym-pen">
+0 0 m
+-1 0.333 l
+-1 -0.333 l
+h
+-1 0 m
+-2 0.333 l
+-2 -0.333 l
+h
+</path>
+</symbol>
+<pen name="heavier" value="0.8"/>
+<pen name="fat" value="1.2"/>
+<pen name="ultrafat" value="2"/>
+<symbolsize name="large" value="5"/>
+<symbolsize name="small" value="2"/>
+<symbolsize name="tiny" value="1.1"/>
+<arrowsize name="large" value="10"/>
+<arrowsize name="small" value="5"/>
+<arrowsize name="tiny" value="3"/>
+<color name="red" value="1 0 0"/>
+<color name="green" value="0 1 0"/>
+<color name="blue" value="0 0 1"/>
+<color name="yellow" value="1 1 0"/>
+<color name="orange" value="1 0.647 0"/>
+<color name="gold" value="1 0.843 0"/>
+<color name="purple" value="0.627 0.125 0.941"/>
+<color name="gray" value="0.745"/>
+<color name="brown" value="0.647 0.165 0.165"/>
+<color name="navy" value="0 0 0.502"/>
+<color name="pink" value="1 0.753 0.796"/>
+<color name="seagreen" value="0.18 0.545 0.341"/>
+<color name="turquoise" value="0.251 0.878 0.816"/>
+<color name="violet" value="0.933 0.51 0.933"/>
+<color name="darkblue" value="0 0 0.545"/>
+<color name="darkcyan" value="0 0.545 0.545"/>
+<color name="darkgray" value="0.663"/>
+<color name="darkgreen" value="0 0.392 0"/>
+<color name="darkmagenta" value="0.545 0 0.545"/>
+<color name="darkorange" value="1 0.549 0"/>
+<color name="darkred" value="0.545 0 0"/>
+<color name="lightblue" value="0.678 0.847 0.902"/>
+<color name="lightcyan" value="0.878 1 1"/>
+<color name="lightgray" value="0.827"/>
+<color name="lightgreen" value="0.565 0.933 0.565"/>
+<color name="lightyellow" value="1 1 0.878"/>
+<dashstyle name="dashed" value="[4] 0"/>
+<dashstyle name="dotted" value="[1 3] 0"/>
+<dashstyle name="dash dotted" value="[4 2 1 2] 0"/>
+<dashstyle name="dash dot dotted" value="[4 2 1 2 1 2] 0"/>
+<textsize name="large" value="\large"/>
+<textsize name="Large" value="\Large"/>
+<textsize name="LARGE" value="\LARGE"/>
+<textsize name="huge" value="\huge"/>
+<textsize name="Huge" value="\Huge"/>
+<textsize name="small" value="\small"/>
+<textsize name="footnote" value="\footnotesize"/>
+<textsize name="tiny" value="\tiny"/>
+<textstyle name="center" begin="\begin{center}" end="\end{center}"/>
+<textstyle name="itemize" begin="\begin{itemize}" end="\end{itemize}"/>
+<textstyle name="item" begin="\begin{itemize}\item{}" end="\end{itemize}"/>
+<gridsize name="4 pts" value="4"/>
+<gridsize name="8 pts (~3 mm)" value="8"/>
+<gridsize name="16 pts (~6 mm)" value="16"/>
+<gridsize name="32 pts (~12 mm)" value="32"/>
+<gridsize name="10 pts (~3.5 mm)" value="10"/>
+<gridsize name="20 pts (~7 mm)" value="20"/>
+<gridsize name="14 pts (~5 mm)" value="14"/>
+<gridsize name="28 pts (~10 mm)" value="28"/>
+<gridsize name="56 pts (~20 mm)" value="56"/>
+<anglesize name="90 deg" value="90"/>
+<anglesize name="60 deg" value="60"/>
+<anglesize name="45 deg" value="45"/>
+<anglesize name="30 deg" value="30"/>
+<anglesize name="22.5 deg" value="22.5"/>
+<opacity name="10%" value="0.1"/>
+<opacity name="30%" value="0.3"/>
+<opacity name="50%" value="0.5"/>
+<opacity name="75%" value="0.75"/>
+<tiling name="falling" angle="-60" step="4" width="1"/>
+<tiling name="rising" angle="30" step="4" width="1"/>
+</ipestyle>
+<page>
+<layer name="alpha"/>
+<view layers="alpha" active="alpha"/>
+<use layer="alpha" matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="288 816" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="304 800" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="320 784" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="336 768" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="272 800" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="256 784" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="240 768" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="240 736" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="240 704" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="336 736" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="336 704" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="272 704" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="304 704" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="256 720" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="288 720" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="320 720" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="304 736" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="272 736" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="256 752" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="288 752" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="320 752" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="304 768" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="272 768" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="288 784" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="352 720" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="368 736" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="224 720" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="208 736" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="288 688" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="288 656" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="288 624" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="288 592" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="288 560" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="288 528" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="288 496" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="288 464" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="384 720" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="400 704" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="192 720" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="176 704" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="400 672" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="416 688" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="432 672" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="432 640" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="304 512" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="320 528" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="336 544" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="352 560" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="368 576" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="384 592" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="400 608" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="416 624" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="176 672" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="160 688" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="144 672" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="144 640" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="160 624" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="176 608" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="192 592" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="208 576" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="224 560" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="240 544" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="256 528" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="272 512" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="304 544" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="272 544" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="256 560" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="320 560" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="336 576" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="304 576" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="272 576" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="240 576" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="224 592" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="256 592" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="320 592" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="352 592" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="368 608" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="336 608" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="304 608" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="272 608" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="240 608" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="208 608" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="192 624" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="224 624" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="256 624" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="320 624" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="352 624" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="384 624" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="400 640" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="368 640" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="336 640" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="304 640" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="272 640" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="240 640" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="208 640" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="176 640" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="160 656" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="192 656" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="224 656" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="256 656" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="320 656" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="352 656" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="384 656" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="416 656" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="368 672" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="336 672" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="304 672" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="272 672" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="240 672" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="208 672" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="192 688" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="224 688" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="256 688" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="320 688" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="352 688" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="384 688" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="368 704" size="normal" stroke="black"/>
+<use matrix="0.833333 0 0 0.863636 -112 103.273" name="mark/disk(sx)" pos="208 704" size="normal" stroke="black"/>
+<path matrix="0.833333 0 0 0.863636 -112 103.273" stroke="black">
+288 816 m
+336 768 l
+336 704 l
+368 736 l
+400 704 l
+400 672 l
+416 688 l
+432 672 l
+432 640 l
+288 496 l
+288 464 l
+288 464 l
+</path>
+<path matrix="0.833333 0 0 0.863636 -112 103.273" stroke="black">
+288 816 m
+240 768 l
+240 704 l
+208 736 l
+176 704 l
+176 672 l
+160 688 l
+144 672 l
+144 640 l
+288 496 l
+288 816 l
+288 816 l
+</path>
+<path matrix="0.833333 0 0 0.863636 -112 103.273" stroke="black">
+304 800 m
+304 512 l
+304 512 l
+</path>
+<path matrix="0.833333 0 0 0.863636 -112 103.273" stroke="black">
+320 528 m
+320 784 l
+</path>
+<path matrix="0.833333 0 0 0.863636 -112 103.273" stroke="black">
+336 704 m
+336 544 l
+</path>
+<path matrix="0.833333 0 0 0.863636 -112 103.273" stroke="black">
+352 560 m
+352 720 l
+</path>
+<path matrix="0.833333 0 0 0.863636 -112 103.273" stroke="black">
+368 736 m
+368 576 l
+</path>
+<path matrix="0.833333 0 0 0.863636 -112 103.273" stroke="black">
+384 720 m
+384 592 l
+</path>
+<path matrix="0.833333 0 0 0.863636 -112 103.273" stroke="black">
+400 672 m
+400 608 l
+</path>
+<path matrix="0.833333 0 0 0.863636 -112 103.273" stroke="black">
+416 688 m
+416 624 l
+</path>
+<path matrix="0.833333 0 0 0.863636 -112 103.273" stroke="black">
+272 800 m
+272 512 l
+</path>
+<path matrix="0.833333 0 0 0.863636 -112 103.273" stroke="black">
+256 784 m
+256 544 l
+</path>
+<path matrix="0.833333 0 0 0.863636 -112 103.273" stroke="black">
+240 704 m
+240 544 l
+</path>
+<path matrix="0.833333 0 0 0.863636 -112 103.273" stroke="black">
+224 720 m
+224 560 l
+</path>
+<path matrix="0.833333 0 0 0.863636 -112 103.273" stroke="black">
+208 736 m
+208 576 l
+</path>
+<path matrix="0.833333 0 0 0.863636 -112 103.273" stroke="black">
+192 720 m
+192 592 l
+</path>
+<path matrix="0.833333 0 0 0.863636 -112 103.273" stroke="black">
+176 672 m
+176 608 l
+</path>
+<path matrix="0.833333 0 0 0.863636 -112 103.273" stroke="black">
+160 688 m
+160 624 l
+</path>
+<path matrix="0.833333 0 0 0.863636 -112 103.273" stroke="black">
+144 672 m
+304 512 l
+304 512 l
+</path>
+<path matrix="0.833333 0 0 0.863636 -112 103.273" stroke="black">
+176 672 m
+320 528 l
+</path>
+<path matrix="0.833333 0 0 0.863636 -112 103.273" stroke="black">
+176 704 m
+336 544 l
+336 544 l
+</path>
+<path matrix="0.833333 0 0 0.863636 -112 103.273" stroke="black">
+192 720 m
+352 560 l
+</path>
+<path matrix="0.833333 0 0 0.863636 -112 103.273" stroke="black">
+240 704 m
+368 576 l
+</path>
+<path matrix="0.833333 0 0 0.863636 -112 103.273" stroke="black">
+240 736 m
+384 592 l
+</path>
+<path matrix="0.833333 0 0 0.863636 -112 103.273" stroke="black">
+240 768 m
+400 608 l
+</path>
+<path matrix="0.833333 0 0 0.863636 -112 103.273" stroke="black">
+256 784 m
+416 624 l
+</path>
+<path matrix="0.833333 0 0 0.863636 -112 103.273" stroke="black">
+272 800 m
+336 736 l
+</path>
+<path matrix="0.833333 0 0 0.863636 -112 103.273" stroke="black">
+352 720 m
+432 640 l
+</path>
+<path matrix="0.833333 0 0 0.863636 -112 103.273" stroke="black">
+432 672 m
+272 512 l
+</path>
+<path matrix="0.833333 0 0 0.863636 -112 103.273" stroke="black">
+400 672 m
+256 528 l
+</path>
+<path matrix="0.833333 0 0 0.863636 -112 103.273" stroke="black">
+400 704 m
+240 544 l
+</path>
+<path matrix="0.833333 0 0 0.863636 -112 103.273" stroke="black">
+384 720 m
+224 560 l
+</path>
+<path matrix="0.833333 0 0 0.863636 -112 103.273" stroke="black">
+336 704 m
+208 576 l
+</path>
+<path matrix="0.833333 0 0 0.863636 -112 103.273" stroke="black">
+336 736 m
+192 592 l
+</path>
+<path matrix="0.833333 0 0 0.863636 -112 103.273" stroke="black">
+336 768 m
+176 608 l
+</path>
+<path matrix="0.833333 0 0 0.863636 -112 103.273" stroke="black">
+320 784 m
+160 624 l
+</path>
+<path matrix="0.833333 0 0 0.863636 -112 103.273" stroke="black">
+144 640 m
+224 720 l
+224 720 l
+</path>
+<path matrix="0.833333 0 0 0.863636 -112 103.273" stroke="black">
+240 736 m
+304 800 l
+</path>
+<use matrix="0.833333 0 0 0.863636 -232 434.909" name="mark/disk(sx)" pos="432 80" size="normal" stroke="seagreen"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="448 672" size="normal" stroke="darkorange"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="448 688" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="448 704" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="448 720" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="448 736" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="448 752" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="448 768" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="448 784" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="440 776" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="432 784" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="424 792" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="416 800" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="408 808" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="400 800" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="392 792" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="384 784" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="376 776" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="368 768" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="360 760" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="360 744" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="360 728" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="360 712" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="360 696" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="360 680" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="360 664" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="360 648" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="360 632" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="360 616" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="360 600" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="360 584" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="368 576" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="376 568" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="384 560" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="392 552" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="400 544" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="408 536" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="416 528" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="424 520" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="432 512" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="440 504" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="448 496" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="456 504" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="464 512" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="472 520" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="480 528" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="488 536" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="496 544" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="504 552" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="512 560" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="520 568" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="528 576" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="536 584" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="456 792" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="464 800" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="464 816" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="472 824" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="480 832" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="488 824" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="496 816" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="504 808" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="512 800" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="520 792" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="528 784" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="536 776" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="536 760" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="544 752" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="544 736" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="544 720" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="544 704" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="544 688" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="544 672" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="544 656" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="544 640" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="544 624" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="544 608" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="544 592" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="408 792" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="400 784" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="408 776" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="416 784" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="424 776" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="392 776" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="384 768" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="400 768" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="416 768" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="432 768" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="480 816" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="472 808" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="488 808" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="480 800" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="496 800" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="472 792" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="488 792" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="504 792" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="464 784" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="480 784" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="496 784" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="512 784" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="520 776" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="504 776" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="488 776" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="472 776" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="456 776" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="464 768" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="480 768" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="496 768" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="512 768" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="528 768" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="456 760" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="472 760" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="488 760" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="504 760" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="520 760" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="528 752" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="536 744" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="512 752" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="496 752" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="480 752" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="464 752" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="456 744" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="472 744" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="488 744" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="504 744" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="520 744" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="528 736" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="536 728" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="512 736" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="496 736" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="480 736" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="464 736" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="456 728" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="472 728" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="488 728" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="504 728" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="520 728" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="528 720" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="536 712" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="512 720" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="440 760" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="424 760" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="408 760" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="392 760" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="376 760" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="368 752" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="384 752" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="400 752" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="416 752" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="432 752" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="440 744" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="424 744" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="408 744" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="392 744" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="376 744" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="368 736" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="384 736" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="400 736" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="416 736" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="432 736" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="440 728" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="424 728" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="408 728" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="392 728" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="376 728" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="368 720" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="384 720" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="400 720" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="416 720" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="432 720" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="464 720" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="480 720" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="496 720" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="520 712" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="504 712" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="488 712" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="472 712" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="456 712" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="440 712" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="424 712" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="408 712" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="392 712" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="376 712" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="368 704" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="384 704" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="400 704" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="416 704" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="432 704" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="464 704" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="480 704" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="496 704" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="512 704" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="528 704" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="536 696" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="520 696" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="504 696" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="488 696" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="472 696" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="456 696" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="440 696" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="424 696" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="408 696" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="392 696" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="376 696" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="368 688" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="384 688" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="400 688" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="416 688" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="432 688" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="464 688" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="480 688" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="496 688" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="512 688" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="528 688" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="376 680" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="392 680" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="408 680" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="424 680" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="440 680" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="456 680" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="472 680" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="488 680" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="504 680" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="520 680" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="536 680" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="368 672" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="384 672" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="400 672" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="416 672" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="432 672" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="464 672" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="480 672" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="496 672" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="512 672" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="528 672" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="376 664" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="392 664" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="408 664" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="424 664" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="440 664" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="456 664" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="472 664" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="488 664" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="504 664" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="520 664" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="536 664" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="368 656" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="384 656" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="400 656" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="416 656" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="432 656" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="448 656" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="464 656" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="480 656" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="496 656" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="512 656" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="528 656" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="376 648" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="392 648" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="408 648" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="424 648" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="440 648" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="456 648" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="472 648" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="488 648" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="504 648" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="368 640" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="384 640" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="400 640" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="416 640" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="432 640" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="448 640" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="464 640" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="480 640" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="496 640" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="512 640" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="520 648" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="528 640" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="536 648" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="376 632" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="392 632" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="408 632" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="424 632" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="440 632" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="456 632" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="472 632" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="488 632" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="504 632" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="520 632" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="536 632" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="368 624" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="384 624" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="400 624" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="416 624" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="432 624" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="448 624" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="464 624" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="480 624" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="496 624" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="512 624" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="528 624" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="536 616" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="520 616" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="504 616" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="488 616" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="472 616" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="456 616" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="440 616" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="424 616" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="408 616" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="392 616" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="376 616" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="368 608" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="384 608" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="400 608" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="416 608" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="432 608" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="448 608" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="464 608" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="480 608" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="496 608" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="512 608" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="528 608" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="536 600" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="520 600" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="504 600" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="488 600" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="472 600" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="456 600" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="440 600" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="424 600" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="408 600" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="392 600" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="376 600" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="368 592" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="384 592" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="400 592" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="416 592" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="432 592" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="448 592" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="464 592" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="480 592" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="496 592" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="512 592" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="528 592" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="376 584" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="392 584" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="408 584" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="424 584" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="440 584" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="456 584" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="472 584" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="488 584" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="504 584" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="520 584" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="384 576" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="400 576" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="416 576" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="432 576" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="448 576" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="464 576" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="480 576" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="496 576" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="512 576" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="392 568" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="408 568" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="424 568" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="440 568" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="456 568" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="472 568" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="488 568" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="504 568" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="400 560" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="416 560" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="432 560" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="448 560" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="464 560" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="480 560" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="496 560" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="488 552" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="472 552" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="456 552" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="440 552" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="424 552" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="408 552" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="416 544" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="432 544" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="448 544" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="464 544" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="480 544" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="472 536" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="456 536" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="440 536" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="424 536" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="432 528" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="448 528" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="464 528" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="440 520" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="456 520" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -80 0" name="mark/disk(sx)" pos="448 512" size="normal" stroke="black"/>
+<path matrix="1 0 0 1 -80 0" stroke="black">
+440 776 m
+464 800 l
+</path>
+<path matrix="1 0 0 1 -80 0" stroke="black">
+464 800 m
+464 816 l
+480 832 l
+536 776 l
+536 760 l
+544 752 l
+544 592 l
+448 496 l
+360 584 l
+360 760 l
+408 808 l
+440 776 l
+440 504 l
+</path>
+<path matrix="1 0 0 1 -80 0" stroke="black">
+472 824 m
+536 760 l
+</path>
+<path matrix="1 0 0 1 -80 0" stroke="black">
+464 816 m
+544 736 l
+</path>
+<path matrix="1 0 0 1 -80 0" stroke="black">
+464 800 m
+544 720 l
+</path>
+<path matrix="1 0 0 1 -80 0" stroke="black">
+456 792 m
+544 704 l
+</path>
+<path matrix="1 0 0 1 -80 0" stroke="black">
+448 784 m
+544 688 l
+</path>
+<path matrix="1 0 0 1 -80 0" stroke="black">
+440 776 m
+544 672 l
+</path>
+<path matrix="1 0 0 1 -80 0" stroke="black">
+400 800 m
+544 656 l
+</path>
+<path matrix="1 0 0 1 -80 0" stroke="black">
+392 792 m
+544 640 l
+</path>
+<path matrix="1 0 0 1 -80 0" stroke="black">
+384 784 m
+544 624 l
+544 624 l
+</path>
+<path matrix="1 0 0 1 -80 0" stroke="black">
+376 776 m
+544 608 l
+</path>
+<path matrix="1 0 0 1 -80 0" stroke="black">
+368 768 m
+544 592 l
+</path>
+<path matrix="1 0 0 1 -80 0" stroke="black">
+360 760 m
+536 584 l
+</path>
+<path matrix="1 0 0 1 -80 0" stroke="black">
+360 744 m
+528 576 l
+</path>
+<path matrix="1 0 0 1 -80 0" stroke="black">
+360 728 m
+520 568 l
+</path>
+<path matrix="1 0 0 1 -80 0" stroke="black">
+360 712 m
+512 560 l
+</path>
+<path matrix="1 0 0 1 -80 0" stroke="black">
+360 696 m
+504 552 l
+</path>
+<path matrix="1 0 0 1 -80 0" stroke="black">
+360 680 m
+496 544 l
+</path>
+<path matrix="1 0 0 1 -80 0" stroke="black">
+360 664 m
+488 536 l
+</path>
+<path matrix="1 0 0 1 -80 0" stroke="black">
+360 648 m
+480 528 l
+</path>
+<path matrix="1 0 0 1 -80 0" stroke="black" cap="1">
+360 624 m
+360 624 l
+</path>
+<path matrix="1 0 0 1 -80 0" stroke="black">
+360 632 m
+472 520 l
+</path>
+<path matrix="1 0 0 1 -80 0" stroke="black">
+360 616 m
+464 512 l
+</path>
+<path matrix="1 0 0 1 -80 0" stroke="black">
+360 600 m
+456 504 l
+</path>
+<path matrix="1 0 0 1 -80 0" stroke="black">
+440 504 m
+544 608 l
+</path>
+<path matrix="1 0 0 1 -80 0" stroke="black">
+432 512 m
+544 624 l
+</path>
+<path matrix="1 0 0 1 -80 0" stroke="black">
+424 520 m
+544 640 l
+</path>
+<path matrix="1 0 0 1 -80 0" stroke="black">
+416 528 m
+544 656 l
+</path>
+<path matrix="1 0 0 1 -80 0" stroke="black">
+408 536 m
+544 672 l
+</path>
+<path matrix="1 0 0 1 -80 0" stroke="black">
+400 544 m
+544 688 l
+</path>
+<path matrix="1 0 0 1 -80 0" stroke="black">
+392 552 m
+544 704 l
+</path>
+<path matrix="1 0 0 1 -80 0" stroke="black">
+544 720 m
+384 560 l
+384 560 l
+</path>
+<path matrix="1 0 0 1 -80 0" stroke="black">
+376 568 m
+544 736 l
+</path>
+<path matrix="1 0 0 1 -80 0" stroke="black">
+544 752 m
+368 576 l
+</path>
+<path matrix="1 0 0 1 -80 0" stroke="black">
+360 584 m
+536 760 l
+</path>
+<path matrix="1 0 0 1 -80 0" stroke="black">
+536 776 m
+360 600 l
+</path>
+<path matrix="1 0 0 1 -80 0" stroke="black">
+360 616 m
+528 784 l
+</path>
+<path matrix="1 0 0 1 -80 0" stroke="black">
+520 792 m
+360 632 l
+</path>
+<path matrix="1 0 0 1 -80 0" stroke="black">
+360 648 m
+512 800 l
+</path>
+<path matrix="1 0 0 1 -80 0" stroke="black">
+504 808 m
+360 664 l
+</path>
+<path matrix="1 0 0 1 -80 0" stroke="black">
+360 680 m
+496 816 l
+</path>
+<path matrix="1 0 0 1 -80 0" stroke="black">
+488 824 m
+464 800 l
+</path>
+<path matrix="1 0 0 1 -80 0" stroke="black">
+440 776 m
+360 696 l
+</path>
+<path matrix="1 0 0 1 -80 0" stroke="black">
+360 712 m
+432 784 l
+</path>
+<path matrix="1 0 0 1 -80 0" stroke="black">
+424 792 m
+360 728 l
+</path>
+<path matrix="1 0 0 1 -80 0" stroke="black" cap="1">
+360 752 m
+360 752 l
+</path>
+<path matrix="1 0 0 1 -80 0" stroke="black">
+360 744 m
+416 800 l
+</path>
+<path matrix="1 0 0 1 -80 0" stroke="black">
+408 808 m
+408 536 l
+</path>
+<path matrix="1 0 0 1 -80 0" stroke="black">
+416 800 m
+416 528 l
+</path>
+<path matrix="1 0 0 1 -80 0" stroke="black">
+424 792 m
+424 520 l
+</path>
+<path matrix="1 0 0 1 -80 0" stroke="black">
+432 784 m
+432 512 l
+</path>
+<path matrix="1 0 0 1 -80 0" stroke="black">
+400 800 m
+400 544 l
+</path>
+<path matrix="1 0 0 1 -80 0" stroke="black">
+392 792 m
+392 552 l
+</path>
+<path matrix="1 0 0 1 -80 0" stroke="black">
+384 784 m
+384 560 l
+</path>
+<path matrix="1 0 0 1 -80 0" stroke="black">
+376 776 m
+376 568 l
+</path>
+<path matrix="1 0 0 1 -80 0" stroke="black">
+368 768 m
+368 576 l
+</path>
+<path matrix="1 0 0 1 -80 0" stroke="black">
+448 496 m
+448 784 l
+</path>
+<path matrix="1 0 0 1 -80 0" stroke="black">
+456 792 m
+456 504 l
+</path>
+<path matrix="1 0 0 1 -80 0" stroke="black">
+464 800 m
+464 512 l
+</path>
+<path matrix="1 0 0 1 -80 0" stroke="black">
+472 824 m
+472 520 l
+</path>
+<path matrix="1 0 0 1 -80 0" stroke="black">
+480 832 m
+480 528 l
+</path>
+<path matrix="1 0 0 1 -80 0" stroke="black">
+488 824 m
+488 536 l
+</path>
+<path matrix="1 0 0 1 -80 0" stroke="black">
+496 816 m
+496 544 l
+</path>
+<path matrix="1 0 0 1 -80 0" stroke="black">
+504 808 m
+504 552 l
+</path>
+<path matrix="1 0 0 1 -80 0" stroke="black">
+512 800 m
+512 560 l
+</path>
+<path matrix="1 0 0 1 -80 0" stroke="black">
+520 792 m
+520 568 l
+</path>
+<path matrix="1 0 0 1 -80 0" stroke="black">
+528 784 m
+528 576 l
+</path>
+<path matrix="1 0 0 1 -80 0" stroke="black">
+536 760 m
+536 584 l
+</path>
+<text transformations="translations" pos="368 672" stroke="black" type="label" width="4.981" height="6.42" depth="0" valign="baseline">0</text>
+<text transformations="translations" pos="104 496" stroke="black" type="label" width="40.902" height="7.473" depth="2.49" valign="baseline">(f) maple</text>
+<text transformations="translations" pos="352 480" stroke="black" type="label" width="69.545" height="7.473" depth="2.49" valign="baseline">(g) asymmetric
+</text>
+</page>
+</ipe>
diff --git a/Latex/bilder/vertex_separator_illustration-eps-converted-to.pdf b/Latex/bilder/vertex_separator_illustration-eps-converted-to.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..860d7befcc359b3c9d4dad690ca2b48712e9f44b
Binary files /dev/null and b/Latex/bilder/vertex_separator_illustration-eps-converted-to.pdf differ
diff --git a/Latex/bilder/vertex_separator_illustration.eps b/Latex/bilder/vertex_separator_illustration.eps
new file mode 100644
index 0000000000000000000000000000000000000000..07579e2f267c9be127d5e97e42ab072b742d6e0d
--- /dev/null
+++ b/Latex/bilder/vertex_separator_illustration.eps
@@ -0,0 +1,813 @@
+%!PS-Adobe-3.0 EPSF-3.0
+%%Creator: cairo 1.15.10 (http://cairographics.org)
+%%CreationDate: Sun Jul 26 21:25:40 2020
+%%Pages: 1
+%%DocumentData: Clean7Bit
+%%LanguageLevel: 2
+%%BoundingBox: 30 446 546 770
+%%EndComments
+%%BeginProlog
+50 dict begin
+/q { gsave } bind def
+/Q { grestore } bind def
+/cm { 6 array astore concat } bind def
+/w { setlinewidth } bind def
+/J { setlinecap } bind def
+/j { setlinejoin } bind def
+/M { setmiterlimit } bind def
+/d { setdash } bind def
+/m { moveto } bind def
+/l { lineto } bind def
+/c { curveto } bind def
+/h { closepath } bind def
+/re { exch dup neg 3 1 roll 5 3 roll moveto 0 rlineto
+      0 exch rlineto 0 rlineto closepath } bind def
+/S { stroke } bind def
+/f { fill } bind def
+/f* { eofill } bind def
+/n { newpath } bind def
+/W { clip } bind def
+/W* { eoclip } bind def
+/BT { } bind def
+/ET { } bind def
+/BDC { mark 3 1 roll /BDC pdfmark } bind def
+/EMC { mark /EMC pdfmark } bind def
+/cairo_store_point { /cairo_point_y exch def /cairo_point_x exch def } def
+/Tj { show currentpoint cairo_store_point } bind def
+/TJ {
+  {
+    dup
+    type /stringtype eq
+    { show } { -0.001 mul 0 cairo_font_matrix dtransform rmoveto } ifelse
+  } forall
+  currentpoint cairo_store_point
+} bind def
+/cairo_selectfont { cairo_font_matrix aload pop pop pop 0 0 6 array astore
+    cairo_font exch selectfont cairo_point_x cairo_point_y moveto } bind def
+/Tf { pop /cairo_font exch def /cairo_font_matrix where
+      { pop cairo_selectfont } if } bind def
+/Td { matrix translate cairo_font_matrix matrix concatmatrix dup
+      /cairo_font_matrix exch def dup 4 get exch 5 get cairo_store_point
+      /cairo_font where { pop cairo_selectfont } if } bind def
+/Tm { 2 copy 8 2 roll 6 array astore /cairo_font_matrix exch def
+      cairo_store_point /cairo_font where { pop cairo_selectfont } if } bind def
+/g { setgray } bind def
+/rg { setrgbcolor } bind def
+/d1 { setcachedevice } bind def
+/cairo_data_source {
+  CairoDataIndex CairoData length lt
+    { CairoData CairoDataIndex get /CairoDataIndex CairoDataIndex 1 add def }
+    { () } ifelse
+} def
+/cairo_flush_ascii85_file { cairo_ascii85_file status { cairo_ascii85_file flushfile } if } def
+/cairo_image { image cairo_flush_ascii85_file } def
+/cairo_imagemask { imagemask cairo_flush_ascii85_file } def
+%%EndProlog
+%%BeginSetup
+%%EndSetup
+%%Page: 1 1
+%%BeginPageSetup
+%%PageBoundingBox: 30 446 546 770
+%%EndPageSetup
+q 30 446 516 324 rectclip
+1 0 0 -1 0 842 cm q
+0 g
+289.801 74 m 289.801 71.602 286.199 71.602 286.199 74 c 286.199 76.398 
+289.801 76.398 289.801 74 c h
+289.801 74 m f*
+289.801 106 m 289.801 103.602 286.199 103.602 286.199 106 c 286.199 108.398
+ 289.801 108.398 289.801 106 c h
+289.801 106 m f*
+289.801 266 m 289.801 263.602 286.199 263.602 286.199 266 c 286.199 268.398
+ 289.801 268.398 289.801 266 c h
+289.801 266 m f*
+289.801 298 m 289.801 295.602 286.199 295.602 286.199 298 c 286.199 300.398
+ 289.801 300.398 289.801 298 c h
+289.801 298 m f*
+289.801 330 m 289.801 327.602 286.199 327.602 286.199 330 c 286.199 332.398
+ 289.801 332.398 289.801 330 c h
+289.801 330 m f*
+289.801 362 m 289.801 359.602 286.199 359.602 286.199 362 c 286.199 364.398
+ 289.801 364.398 289.801 362 c h
+289.801 362 m f*
+305.801 346 m 305.801 343.602 302.199 343.602 302.199 346 c 302.199 348.398
+ 305.801 348.398 305.801 346 c h
+305.801 346 m f*
+321.801 330 m 321.801 327.602 318.199 327.602 318.199 330 c 318.199 332.398
+ 321.801 332.398 321.801 330 c h
+321.801 330 m f*
+337.801 314 m 337.801 311.602 334.199 311.602 334.199 314 c 334.199 316.398
+ 337.801 316.398 337.801 314 c h
+337.801 314 m f*
+353.801 298 m 353.801 295.602 350.199 295.602 350.199 298 c 350.199 300.398
+ 353.801 300.398 353.801 298 c h
+353.801 298 m f*
+273.801 346 m 273.801 343.602 270.199 343.602 270.199 346 c 270.199 348.398
+ 273.801 348.398 273.801 346 c h
+273.801 346 m f*
+257.801 330 m 257.801 327.602 254.199 327.602 254.199 330 c 254.199 332.398
+ 257.801 332.398 257.801 330 c h
+257.801 330 m f*
+241.801 314 m 241.801 311.602 238.199 311.602 238.199 314 c 238.199 316.398
+ 241.801 316.398 241.801 314 c h
+241.801 314 m f*
+225.801 298 m 225.801 295.602 222.199 295.602 222.199 298 c 222.199 300.398
+ 225.801 300.398 225.801 298 c h
+225.801 298 m f*
+273.801 90 m 273.801 87.602 270.199 87.602 270.199 90 c 270.199 92.398 
+273.801 92.398 273.801 90 c h
+273.801 90 m f*
+257.801 106 m 257.801 103.602 254.199 103.602 254.199 106 c 254.199 108.398
+ 257.801 108.398 257.801 106 c h
+257.801 106 m f*
+241.801 122 m 241.801 119.602 238.199 119.602 238.199 122 c 238.199 124.398
+ 241.801 124.398 241.801 122 c h
+241.801 122 m f*
+225.801 138 m 225.801 135.602 222.199 135.602 222.199 138 c 222.199 140.398
+ 225.801 140.398 225.801 138 c h
+225.801 138 m f*
+305.801 90 m 305.801 87.602 302.199 87.602 302.199 90 c 302.199 92.398 
+305.801 92.398 305.801 90 c h
+305.801 90 m f*
+321.801 106 m 321.801 103.602 318.199 103.602 318.199 106 c 318.199 108.398
+ 321.801 108.398 321.801 106 c h
+321.801 106 m f*
+337.801 122 m 337.801 119.602 334.199 119.602 334.199 122 c 334.199 124.398
+ 337.801 124.398 337.801 122 c h
+337.801 122 m f*
+353.801 138 m 353.801 135.602 350.199 135.602 350.199 138 c 350.199 140.398
+ 353.801 140.398 353.801 138 c h
+353.801 138 m f*
+225.801 170 m 225.801 167.602 222.199 167.602 222.199 170 c 222.199 172.398
+ 225.801 172.398 225.801 170 c h
+225.801 170 m f*
+225.801 202 m 225.801 199.602 222.199 199.602 222.199 202 c 222.199 204.398
+ 225.801 204.398 225.801 202 c h
+225.801 202 m f*
+225.801 234 m 225.801 231.602 222.199 231.602 222.199 234 c 222.199 236.398
+ 225.801 236.398 225.801 234 c h
+225.801 234 m f*
+225.801 266 m 225.801 263.602 222.199 263.602 222.199 266 c 222.199 268.398
+ 225.801 268.398 225.801 266 c h
+225.801 266 m f*
+353.801 266 m 353.801 263.602 350.199 263.602 350.199 266 c 350.199 268.398
+ 353.801 268.398 353.801 266 c h
+353.801 266 m f*
+353.801 234 m 353.801 231.602 350.199 231.602 350.199 234 c 350.199 236.398
+ 353.801 236.398 353.801 234 c h
+353.801 234 m f*
+353.801 202 m 353.801 199.602 350.199 199.602 350.199 202 c 350.199 204.398
+ 353.801 204.398 353.801 202 c h
+353.801 202 m f*
+353.801 170 m 353.801 167.602 350.199 167.602 350.199 170 c 350.199 172.398
+ 353.801 172.398 353.801 170 c h
+353.801 170 m f*
+305.801 122 m 305.801 119.602 302.199 119.602 302.199 122 c 302.199 124.398
+ 305.801 124.398 305.801 122 c h
+305.801 122 m f*
+273.801 122 m 273.801 119.602 270.199 119.602 270.199 122 c 270.199 124.398
+ 273.801 124.398 273.801 122 c h
+273.801 122 m f*
+257.801 138 m 257.801 135.602 254.199 135.602 254.199 138 c 254.199 140.398
+ 257.801 140.398 257.801 138 c h
+257.801 138 m f*
+321.801 138 m 321.801 135.602 318.199 135.602 318.199 138 c 318.199 140.398
+ 321.801 140.398 321.801 138 c h
+321.801 138 m f*
+241.801 154 m 241.801 151.602 238.199 151.602 238.199 154 c 238.199 156.398
+ 241.801 156.398 241.801 154 c h
+241.801 154 m f*
+337.801 154 m 337.801 151.602 334.199 151.602 334.199 154 c 334.199 156.398
+ 337.801 156.398 337.801 154 c h
+337.801 154 m f*
+257.801 170 m 257.801 167.602 254.199 167.602 254.199 170 c 254.199 172.398
+ 257.801 172.398 257.801 170 c h
+257.801 170 m f*
+321.801 170 m 321.801 167.602 318.199 167.602 318.199 170 c 318.199 172.398
+ 321.801 172.398 321.801 170 c h
+321.801 170 m f*
+241.801 186 m 241.801 183.602 238.199 183.602 238.199 186 c 238.199 188.398
+ 241.801 188.398 241.801 186 c h
+241.801 186 m f*
+337.801 186 m 337.801 183.602 334.199 183.602 334.199 186 c 334.199 188.398
+ 337.801 188.398 337.801 186 c h
+337.801 186 m f*
+257.801 202 m 257.801 199.602 254.199 199.602 254.199 202 c 254.199 204.398
+ 257.801 204.398 257.801 202 c h
+257.801 202 m f*
+321.801 202 m 321.801 199.602 318.199 199.602 318.199 202 c 318.199 204.398
+ 321.801 204.398 321.801 202 c h
+321.801 202 m f*
+241.801 218 m 241.801 215.602 238.199 215.602 238.199 218 c 238.199 220.398
+ 241.801 220.398 241.801 218 c h
+241.801 218 m f*
+273.801 218 m 273.801 215.602 270.199 215.602 270.199 218 c 270.199 220.398
+ 273.801 220.398 273.801 218 c h
+273.801 218 m f*
+305.801 218 m 305.801 215.602 302.199 215.602 302.199 218 c 302.199 220.398
+ 305.801 220.398 305.801 218 c h
+305.801 218 m f*
+337.801 218 m 337.801 215.602 334.199 215.602 334.199 218 c 334.199 220.398
+ 337.801 220.398 337.801 218 c h
+337.801 218 m f*
+241.801 250 m 241.801 247.602 238.199 247.602 238.199 250 c 238.199 252.398
+ 241.801 252.398 241.801 250 c h
+241.801 250 m f*
+241.801 282 m 241.801 279.602 238.199 279.602 238.199 282 c 238.199 284.398
+ 241.801 284.398 241.801 282 c h
+241.801 282 m f*
+257.801 234 m 257.801 231.602 254.199 231.602 254.199 234 c 254.199 236.398
+ 257.801 236.398 257.801 234 c h
+257.801 234 m f*
+257.801 266 m 257.801 263.602 254.199 263.602 254.199 266 c 254.199 268.398
+ 257.801 268.398 257.801 266 c h
+257.801 266 m f*
+257.801 298 m 257.801 295.602 254.199 295.602 254.199 298 c 254.199 300.398
+ 257.801 300.398 257.801 298 c h
+257.801 298 m f*
+273.801 250 m 273.801 247.602 270.199 247.602 270.199 250 c 270.199 252.398
+ 273.801 252.398 273.801 250 c h
+273.801 250 m f*
+273.801 282 m 273.801 279.602 270.199 279.602 270.199 282 c 270.199 284.398
+ 273.801 284.398 273.801 282 c h
+273.801 282 m f*
+273.801 314 m 273.801 311.602 270.199 311.602 270.199 314 c 270.199 316.398
+ 273.801 316.398 273.801 314 c h
+273.801 314 m f*
+305.801 250 m 305.801 247.602 302.199 247.602 302.199 250 c 302.199 252.398
+ 305.801 252.398 305.801 250 c h
+305.801 250 m f*
+305.801 282 m 305.801 279.602 302.199 279.602 302.199 282 c 302.199 284.398
+ 305.801 284.398 305.801 282 c h
+305.801 282 m f*
+305.801 314 m 305.801 311.602 302.199 311.602 302.199 314 c 302.199 316.398
+ 305.801 316.398 305.801 314 c h
+305.801 314 m f*
+321.801 234 m 321.801 231.602 318.199 231.602 318.199 234 c 318.199 236.398
+ 321.801 236.398 321.801 234 c h
+321.801 234 m f*
+321.801 266 m 321.801 263.602 318.199 263.602 318.199 266 c 318.199 268.398
+ 321.801 268.398 321.801 266 c h
+321.801 266 m f*
+321.801 298 m 321.801 295.602 318.199 295.602 318.199 298 c 318.199 300.398
+ 321.801 300.398 321.801 298 c h
+321.801 298 m f*
+337.801 282 m 337.801 279.602 334.199 279.602 334.199 282 c 334.199 284.398
+ 337.801 284.398 337.801 282 c h
+337.801 282 m f*
+337.801 250 m 337.801 247.602 334.199 247.602 334.199 250 c 334.199 252.398
+ 337.801 252.398 337.801 250 c h
+337.801 250 m f*
+0.4 w
+0 J
+1 j
+[] 0.0 d
+10 M 224 138 m 288 74 l 352 138 l 352 298 l 288 362 l 224 298 l 224 170 l 304
+ 90 l S
+224 138 m 224 170 l S
+240 122 m 240 314 l S
+256 106 m 256 330 l S
+272 90 m 272 346 l S
+288 74 m 288 394 l S
+304 90 m 304 346 l S
+320 106 m 320 330 l S
+336 122 m 336 314 l S
+224 202 m 320 106 l S
+336 122 m 224 234 l S
+224 266 m 352 138 l S
+352 170 m 224 298 l S
+240 314 m 352 202 l S
+352 234 m 256 330 l S
+272 346 m 352 266 l S
+224 266 m 304 346 l S
+224 234 m 320 330 l S
+224 202 m 336 314 l S
+224 170 m 352 298 l S
+224 138 m 352 266 l S
+240 122 m 352 234 l S
+256 106 m 352 202 l S
+272 90 m 352 170 l S
+288 74 m 352 138 l S
+289.801 394 m 289.801 391.602 286.199 391.602 286.199 394 c 286.199 396.398
+ 289.801 396.398 289.801 394 c h
+289.801 394 m f*
+0 0 1 rg
+289.801 170 m 289.801 167.602 286.199 167.602 286.199 170 c 286.199 172.398
+ 289.801 172.398 289.801 170 c h
+289.801 170 m f*
+1 0 0 rg
+289.801 234 m 289.801 231.602 286.199 231.602 286.199 234 c 286.199 236.398
+ 289.801 236.398 289.801 234 c h
+289.801 234 m f*
+0 g
+97.801 74 m 97.801 71.602 94.199 71.602 94.199 74 c 94.199 76.398 97.801
+ 76.398 97.801 74 c h
+97.801 74 m f*
+97.801 106 m 97.801 103.602 94.199 103.602 94.199 106 c 94.199 108.398 
+97.801 108.398 97.801 106 c h
+97.801 106 m f*
+97.801 138 m 97.801 135.602 94.199 135.602 94.199 138 c 94.199 140.398 
+97.801 140.398 97.801 138 c h
+97.801 138 m f*
+97.801 298 m 97.801 295.602 94.199 295.602 94.199 298 c 94.199 300.398 
+97.801 300.398 97.801 298 c h
+97.801 298 m f*
+97.801 330 m 97.801 327.602 94.199 327.602 94.199 330 c 94.199 332.398 
+97.801 332.398 97.801 330 c h
+97.801 330 m f*
+97.801 362 m 97.801 359.602 94.199 359.602 94.199 362 c 94.199 364.398 
+97.801 364.398 97.801 362 c h
+97.801 362 m f*
+113.801 346 m 113.801 343.602 110.199 343.602 110.199 346 c 110.199 348.398
+ 113.801 348.398 113.801 346 c h
+113.801 346 m f*
+129.801 330 m 129.801 327.602 126.199 327.602 126.199 330 c 126.199 332.398
+ 129.801 332.398 129.801 330 c h
+129.801 330 m f*
+145.801 314 m 145.801 311.602 142.199 311.602 142.199 314 c 142.199 316.398
+ 145.801 316.398 145.801 314 c h
+145.801 314 m f*
+161.801 298 m 161.801 295.602 158.199 295.602 158.199 298 c 158.199 300.398
+ 161.801 300.398 161.801 298 c h
+161.801 298 m f*
+81.801 346 m 81.801 343.602 78.199 343.602 78.199 346 c 78.199 348.398 
+81.801 348.398 81.801 346 c h
+81.801 346 m f*
+65.801 330 m 65.801 327.602 62.199 327.602 62.199 330 c 62.199 332.398 
+65.801 332.398 65.801 330 c h
+65.801 330 m f*
+49.801 314 m 49.801 311.602 46.199 311.602 46.199 314 c 46.199 316.398 
+49.801 316.398 49.801 314 c h
+49.801 314 m f*
+33.801 298 m 33.801 295.602 30.199 295.602 30.199 298 c 30.199 300.398 
+33.801 300.398 33.801 298 c h
+33.801 298 m f*
+81.801 90 m 81.801 87.602 78.199 87.602 78.199 90 c 78.199 92.398 81.801
+ 92.398 81.801 90 c h
+81.801 90 m f*
+65.801 106 m 65.801 103.602 62.199 103.602 62.199 106 c 62.199 108.398 
+65.801 108.398 65.801 106 c h
+65.801 106 m f*
+49.801 122 m 49.801 119.602 46.199 119.602 46.199 122 c 46.199 124.398 
+49.801 124.398 49.801 122 c h
+49.801 122 m f*
+33.801 138 m 33.801 135.602 30.199 135.602 30.199 138 c 30.199 140.398 
+33.801 140.398 33.801 138 c h
+33.801 138 m f*
+113.801 90 m 113.801 87.602 110.199 87.602 110.199 90 c 110.199 92.398 
+113.801 92.398 113.801 90 c h
+113.801 90 m f*
+129.801 106 m 129.801 103.602 126.199 103.602 126.199 106 c 126.199 108.398
+ 129.801 108.398 129.801 106 c h
+129.801 106 m f*
+145.801 122 m 145.801 119.602 142.199 119.602 142.199 122 c 142.199 124.398
+ 145.801 124.398 145.801 122 c h
+145.801 122 m f*
+161.801 138 m 161.801 135.602 158.199 135.602 158.199 138 c 158.199 140.398
+ 161.801 140.398 161.801 138 c h
+161.801 138 m f*
+33.801 234 m 33.801 231.602 30.199 231.602 30.199 234 c 30.199 236.398 
+33.801 236.398 33.801 234 c h
+33.801 234 m f*
+33.801 266 m 33.801 263.602 30.199 263.602 30.199 266 c 30.199 268.398 
+33.801 268.398 33.801 266 c h
+33.801 266 m f*
+161.801 266 m 161.801 263.602 158.199 263.602 158.199 266 c 158.199 268.398
+ 161.801 268.398 161.801 266 c h
+161.801 266 m f*
+161.801 234 m 161.801 231.602 158.199 231.602 158.199 234 c 158.199 236.398
+ 161.801 236.398 161.801 234 c h
+161.801 234 m f*
+113.801 122 m 113.801 119.602 110.199 119.602 110.199 122 c 110.199 124.398
+ 113.801 124.398 113.801 122 c h
+113.801 122 m f*
+81.801 122 m 81.801 119.602 78.199 119.602 78.199 122 c 78.199 124.398 
+81.801 124.398 81.801 122 c h
+81.801 122 m f*
+65.801 138 m 65.801 135.602 62.199 135.602 62.199 138 c 62.199 140.398 
+65.801 140.398 65.801 138 c h
+65.801 138 m f*
+129.801 138 m 129.801 135.602 126.199 135.602 126.199 138 c 126.199 140.398
+ 129.801 140.398 129.801 138 c h
+129.801 138 m f*
+49.801 154 m 49.801 151.602 46.199 151.602 46.199 154 c 46.199 156.398 
+49.801 156.398 49.801 154 c h
+49.801 154 m f*
+81.801 154 m 81.801 151.602 78.199 151.602 78.199 154 c 78.199 156.398 
+81.801 156.398 81.801 154 c h
+81.801 154 m f*
+113.801 154 m 113.801 151.602 110.199 151.602 110.199 154 c 110.199 156.398
+ 113.801 156.398 113.801 154 c h
+113.801 154 m f*
+145.801 154 m 145.801 151.602 142.199 151.602 142.199 154 c 142.199 156.398
+ 145.801 156.398 145.801 154 c h
+145.801 154 m f*
+49.801 250 m 49.801 247.602 46.199 247.602 46.199 250 c 46.199 252.398 
+49.801 252.398 49.801 250 c h
+49.801 250 m f*
+49.801 282 m 49.801 279.602 46.199 279.602 46.199 282 c 46.199 284.398 
+49.801 284.398 49.801 282 c h
+49.801 282 m f*
+65.801 234 m 65.801 231.602 62.199 231.602 62.199 234 c 62.199 236.398 
+65.801 236.398 65.801 234 c h
+65.801 234 m f*
+65.801 266 m 65.801 263.602 62.199 263.602 62.199 266 c 62.199 268.398 
+65.801 268.398 65.801 266 c h
+65.801 266 m f*
+65.801 298 m 65.801 295.602 62.199 295.602 62.199 298 c 62.199 300.398 
+65.801 300.398 65.801 298 c h
+65.801 298 m f*
+81.801 250 m 81.801 247.602 78.199 247.602 78.199 250 c 78.199 252.398 
+81.801 252.398 81.801 250 c h
+81.801 250 m f*
+81.801 282 m 81.801 279.602 78.199 279.602 78.199 282 c 78.199 284.398 
+81.801 284.398 81.801 282 c h
+81.801 282 m f*
+81.801 314 m 81.801 311.602 78.199 311.602 78.199 314 c 78.199 316.398 
+81.801 316.398 81.801 314 c h
+81.801 314 m f*
+113.801 250 m 113.801 247.602 110.199 247.602 110.199 250 c 110.199 252.398
+ 113.801 252.398 113.801 250 c h
+113.801 250 m f*
+113.801 282 m 113.801 279.602 110.199 279.602 110.199 282 c 110.199 284.398
+ 113.801 284.398 113.801 282 c h
+113.801 282 m f*
+113.801 314 m 113.801 311.602 110.199 311.602 110.199 314 c 110.199 316.398
+ 113.801 316.398 113.801 314 c h
+113.801 314 m f*
+129.801 234 m 129.801 231.602 126.199 231.602 126.199 234 c 126.199 236.398
+ 129.801 236.398 129.801 234 c h
+129.801 234 m f*
+129.801 266 m 129.801 263.602 126.199 263.602 126.199 266 c 126.199 268.398
+ 129.801 268.398 129.801 266 c h
+129.801 266 m f*
+129.801 298 m 129.801 295.602 126.199 295.602 126.199 298 c 126.199 300.398
+ 129.801 300.398 129.801 298 c h
+129.801 298 m f*
+145.801 282 m 145.801 279.602 142.199 279.602 142.199 282 c 142.199 284.398
+ 145.801 284.398 145.801 282 c h
+145.801 282 m f*
+145.801 250 m 145.801 247.602 142.199 247.602 142.199 250 c 142.199 252.398
+ 145.801 252.398 145.801 250 c h
+145.801 250 m f*
+32 138 m 96 74 l 160 138 l 160 298 l 96 362 l 32 298 l 32 170 l 112 90 
+l S
+32 138 m 32 170 l S
+48 122 m 48 314 l S
+64 106 m 64 330 l S
+80 90 m 80 346 l S
+96 74 m 96 394 l S
+112 90 m 112 346 l S
+128 106 m 128 330 l S
+144 122 m 144 314 l S
+32 202 m 128 106 l S
+144 122 m 32 234 l S
+32 266 m 160 138 l S
+160 170 m 32 298 l S
+48 314 m 160 202 l S
+160 234 m 64 330 l S
+80 346 m 160 266 l S
+32 266 m 112 346 l S
+32 234 m 128 330 l S
+32 202 m 144 314 l S
+32 170 m 160 298 l S
+32 138 m 160 266 l S
+48 122 m 160 234 l S
+64 106 m 160 202 l S
+80 90 m 160 170 l S
+96 74 m 160 138 l S
+97.801 394 m 97.801 391.602 94.199 391.602 94.199 394 c 94.199 396.398 
+97.801 396.398 97.801 394 c h
+97.801 394 m f*
+0 0 1 rg
+97.801 170 m 97.801 167.602 94.199 167.602 94.199 170 c 94.199 172.398 
+97.801 172.398 97.801 170 c h
+97.801 170 m f*
+0 g
+481.801 74 m 481.801 71.602 478.199 71.602 478.199 74 c 478.199 76.398 
+481.801 76.398 481.801 74 c h
+481.801 74 m f*
+481.801 106 m 481.801 103.602 478.199 103.602 478.199 106 c 478.199 108.398
+ 481.801 108.398 481.801 106 c h
+481.801 106 m f*
+481.801 138 m 481.801 135.602 478.199 135.602 478.199 138 c 478.199 140.398
+ 481.801 140.398 481.801 138 c h
+481.801 138 m f*
+481.801 266 m 481.801 263.602 478.199 263.602 478.199 266 c 478.199 268.398
+ 481.801 268.398 481.801 266 c h
+481.801 266 m f*
+481.801 298 m 481.801 295.602 478.199 295.602 478.199 298 c 478.199 300.398
+ 481.801 300.398 481.801 298 c h
+481.801 298 m f*
+481.801 330 m 481.801 327.602 478.199 327.602 478.199 330 c 478.199 332.398
+ 481.801 332.398 481.801 330 c h
+481.801 330 m f*
+481.801 362 m 481.801 359.602 478.199 359.602 478.199 362 c 478.199 364.398
+ 481.801 364.398 481.801 362 c h
+481.801 362 m f*
+497.801 346 m 497.801 343.602 494.199 343.602 494.199 346 c 494.199 348.398
+ 497.801 348.398 497.801 346 c h
+497.801 346 m f*
+513.801 330 m 513.801 327.602 510.199 327.602 510.199 330 c 510.199 332.398
+ 513.801 332.398 513.801 330 c h
+513.801 330 m f*
+529.801 314 m 529.801 311.602 526.199 311.602 526.199 314 c 526.199 316.398
+ 529.801 316.398 529.801 314 c h
+529.801 314 m f*
+545.801 298 m 545.801 295.602 542.199 295.602 542.199 298 c 542.199 300.398
+ 545.801 300.398 545.801 298 c h
+545.801 298 m f*
+465.801 346 m 465.801 343.602 462.199 343.602 462.199 346 c 462.199 348.398
+ 465.801 348.398 465.801 346 c h
+465.801 346 m f*
+449.801 330 m 449.801 327.602 446.199 327.602 446.199 330 c 446.199 332.398
+ 449.801 332.398 449.801 330 c h
+449.801 330 m f*
+433.801 314 m 433.801 311.602 430.199 311.602 430.199 314 c 430.199 316.398
+ 433.801 316.398 433.801 314 c h
+433.801 314 m f*
+417.801 298 m 417.801 295.602 414.199 295.602 414.199 298 c 414.199 300.398
+ 417.801 300.398 417.801 298 c h
+417.801 298 m f*
+465.801 90 m 465.801 87.602 462.199 87.602 462.199 90 c 462.199 92.398 
+465.801 92.398 465.801 90 c h
+465.801 90 m f*
+449.801 106 m 449.801 103.602 446.199 103.602 446.199 106 c 446.199 108.398
+ 449.801 108.398 449.801 106 c h
+449.801 106 m f*
+433.801 122 m 433.801 119.602 430.199 119.602 430.199 122 c 430.199 124.398
+ 433.801 124.398 433.801 122 c h
+433.801 122 m f*
+417.801 138 m 417.801 135.602 414.199 135.602 414.199 138 c 414.199 140.398
+ 417.801 140.398 417.801 138 c h
+417.801 138 m f*
+497.801 90 m 497.801 87.602 494.199 87.602 494.199 90 c 494.199 92.398 
+497.801 92.398 497.801 90 c h
+497.801 90 m f*
+513.801 106 m 513.801 103.602 510.199 103.602 510.199 106 c 510.199 108.398
+ 513.801 108.398 513.801 106 c h
+513.801 106 m f*
+529.801 122 m 529.801 119.602 526.199 119.602 526.199 122 c 526.199 124.398
+ 529.801 124.398 529.801 122 c h
+529.801 122 m f*
+545.801 138 m 545.801 135.602 542.199 135.602 542.199 138 c 542.199 140.398
+ 545.801 140.398 545.801 138 c h
+545.801 138 m f*
+417.801 234 m 417.801 231.602 414.199 231.602 414.199 234 c 414.199 236.398
+ 417.801 236.398 417.801 234 c h
+417.801 234 m f*
+417.801 266 m 417.801 263.602 414.199 263.602 414.199 266 c 414.199 268.398
+ 417.801 268.398 417.801 266 c h
+417.801 266 m f*
+545.801 266 m 545.801 263.602 542.199 263.602 542.199 266 c 542.199 268.398
+ 545.801 268.398 545.801 266 c h
+545.801 266 m f*
+545.801 234 m 545.801 231.602 542.199 231.602 542.199 234 c 542.199 236.398
+ 545.801 236.398 545.801 234 c h
+545.801 234 m f*
+545.801 170 m 545.801 167.602 542.199 167.602 542.199 170 c 542.199 172.398
+ 545.801 172.398 545.801 170 c h
+545.801 170 m f*
+497.801 122 m 497.801 119.602 494.199 119.602 494.199 122 c 494.199 124.398
+ 497.801 124.398 497.801 122 c h
+497.801 122 m f*
+465.801 122 m 465.801 119.602 462.199 119.602 462.199 122 c 462.199 124.398
+ 465.801 124.398 465.801 122 c h
+465.801 122 m f*
+449.801 138 m 449.801 135.602 446.199 135.602 446.199 138 c 446.199 140.398
+ 449.801 140.398 449.801 138 c h
+449.801 138 m f*
+513.801 138 m 513.801 135.602 510.199 135.602 510.199 138 c 510.199 140.398
+ 513.801 140.398 513.801 138 c h
+513.801 138 m f*
+433.801 154 m 433.801 151.602 430.199 151.602 430.199 154 c 430.199 156.398
+ 433.801 156.398 433.801 154 c h
+433.801 154 m f*
+465.801 154 m 465.801 151.602 462.199 151.602 462.199 154 c 462.199 156.398
+ 465.801 156.398 465.801 154 c h
+465.801 154 m f*
+497.801 154 m 497.801 151.602 494.199 151.602 494.199 154 c 494.199 156.398
+ 497.801 156.398 497.801 154 c h
+497.801 154 m f*
+529.801 154 m 529.801 151.602 526.199 151.602 526.199 154 c 526.199 156.398
+ 529.801 156.398 529.801 154 c h
+529.801 154 m f*
+449.801 170 m 449.801 167.602 446.199 167.602 446.199 170 c 446.199 172.398
+ 449.801 172.398 449.801 170 c h
+449.801 170 m f*
+513.801 170 m 513.801 167.602 510.199 167.602 510.199 170 c 510.199 172.398
+ 513.801 172.398 513.801 170 c h
+513.801 170 m f*
+433.801 218 m 433.801 215.602 430.199 215.602 430.199 218 c 430.199 220.398
+ 433.801 220.398 433.801 218 c h
+433.801 218 m f*
+465.801 218 m 465.801 215.602 462.199 215.602 462.199 218 c 462.199 220.398
+ 465.801 220.398 465.801 218 c h
+465.801 218 m f*
+497.801 218 m 497.801 215.602 494.199 215.602 494.199 218 c 494.199 220.398
+ 497.801 220.398 497.801 218 c h
+497.801 218 m f*
+529.801 218 m 529.801 215.602 526.199 215.602 526.199 218 c 526.199 220.398
+ 529.801 220.398 529.801 218 c h
+529.801 218 m f*
+433.801 250 m 433.801 247.602 430.199 247.602 430.199 250 c 430.199 252.398
+ 433.801 252.398 433.801 250 c h
+433.801 250 m f*
+433.801 282 m 433.801 279.602 430.199 279.602 430.199 282 c 430.199 284.398
+ 433.801 284.398 433.801 282 c h
+433.801 282 m f*
+449.801 234 m 449.801 231.602 446.199 231.602 446.199 234 c 446.199 236.398
+ 449.801 236.398 449.801 234 c h
+449.801 234 m f*
+449.801 266 m 449.801 263.602 446.199 263.602 446.199 266 c 446.199 268.398
+ 449.801 268.398 449.801 266 c h
+449.801 266 m f*
+449.801 298 m 449.801 295.602 446.199 295.602 446.199 298 c 446.199 300.398
+ 449.801 300.398 449.801 298 c h
+449.801 298 m f*
+465.801 250 m 465.801 247.602 462.199 247.602 462.199 250 c 462.199 252.398
+ 465.801 252.398 465.801 250 c h
+465.801 250 m f*
+465.801 282 m 465.801 279.602 462.199 279.602 462.199 282 c 462.199 284.398
+ 465.801 284.398 465.801 282 c h
+465.801 282 m f*
+465.801 314 m 465.801 311.602 462.199 311.602 462.199 314 c 462.199 316.398
+ 465.801 316.398 465.801 314 c h
+465.801 314 m f*
+497.801 250 m 497.801 247.602 494.199 247.602 494.199 250 c 494.199 252.398
+ 497.801 252.398 497.801 250 c h
+497.801 250 m f*
+497.801 282 m 497.801 279.602 494.199 279.602 494.199 282 c 494.199 284.398
+ 497.801 284.398 497.801 282 c h
+497.801 282 m f*
+497.801 314 m 497.801 311.602 494.199 311.602 494.199 314 c 494.199 316.398
+ 497.801 316.398 497.801 314 c h
+497.801 314 m f*
+513.801 234 m 513.801 231.602 510.199 231.602 510.199 234 c 510.199 236.398
+ 513.801 236.398 513.801 234 c h
+513.801 234 m f*
+513.801 266 m 513.801 263.602 510.199 263.602 510.199 266 c 510.199 268.398
+ 513.801 268.398 513.801 266 c h
+513.801 266 m f*
+513.801 298 m 513.801 295.602 510.199 295.602 510.199 298 c 510.199 300.398
+ 513.801 300.398 513.801 298 c h
+513.801 298 m f*
+529.801 282 m 529.801 279.602 526.199 279.602 526.199 282 c 526.199 284.398
+ 529.801 284.398 529.801 282 c h
+529.801 282 m f*
+529.801 250 m 529.801 247.602 526.199 247.602 526.199 250 c 526.199 252.398
+ 529.801 252.398 529.801 250 c h
+529.801 250 m f*
+416 138 m 480 74 l 544 138 l 544 298 l 480 362 l 416 298 l 416 170 l 496
+ 90 l S
+416 138 m 416 170 l S
+432 122 m 432 314 l S
+448 106 m 448 330 l S
+464 90 m 464 346 l S
+480 74 m 480 394 l S
+496 90 m 496 346 l S
+512 106 m 512 330 l S
+528 122 m 528 314 l S
+416 202 m 512 106 l S
+528 122 m 416 234 l S
+416 266 m 544 138 l S
+544 170 m 416 298 l S
+432 314 m 544 202 l S
+544 234 m 448 330 l S
+464 346 m 544 266 l S
+416 266 m 496 346 l S
+416 234 m 512 330 l S
+416 202 m 528 314 l S
+416 170 m 544 298 l S
+416 138 m 544 266 l S
+432 122 m 544 234 l S
+448 106 m 544 202 l S
+464 90 m 544 170 l S
+480 74 m 544 138 l S
+481.801 394 m 481.801 391.602 478.199 391.602 478.199 394 c 478.199 396.398
+ 481.801 396.398 481.801 394 c h
+481.801 394 m f*
+0 1 0 rg
+33.801 202 m 33.801 199.602 30.199 199.602 30.199 202 c 30.199 204.398 
+33.801 204.398 33.801 202 c h
+33.801 202 m f*
+65.801 202 m 65.801 199.602 62.199 199.602 62.199 202 c 62.199 204.398 
+65.801 204.398 65.801 202 c h
+65.801 202 m f*
+97.801 202 m 97.801 199.602 94.199 199.602 94.199 202 c 94.199 204.398 
+97.801 204.398 97.801 202 c h
+97.801 202 m f*
+129.801 202 m 129.801 199.602 126.199 199.602 126.199 202 c 126.199 204.398
+ 129.801 204.398 129.801 202 c h
+129.801 202 m f*
+161.801 202 m 161.801 199.602 158.199 199.602 158.199 202 c 158.199 204.398
+ 161.801 204.398 161.801 202 c h
+161.801 202 m f*
+113.801 186 m 113.801 183.602 110.199 183.602 110.199 186 c 110.199 188.398
+ 113.801 188.398 113.801 186 c h
+113.801 186 m f*
+145.801 186 m 145.801 183.602 142.199 183.602 142.199 186 c 142.199 188.398
+ 145.801 188.398 145.801 186 c h
+145.801 186 m f*
+129.801 170 m 129.801 167.602 126.199 167.602 126.199 170 c 126.199 172.398
+ 129.801 172.398 129.801 170 c h
+129.801 170 m f*
+161.801 170 m 161.801 167.602 158.199 167.602 158.199 170 c 158.199 172.398
+ 161.801 172.398 161.801 170 c h
+161.801 170 m f*
+65.801 170 m 65.801 167.602 62.199 167.602 62.199 170 c 62.199 172.398 
+65.801 172.398 65.801 170 c h
+65.801 170 m f*
+49.801 186 m 49.801 183.602 46.199 183.602 46.199 186 c 46.199 188.398 
+49.801 188.398 49.801 186 c h
+49.801 186 m f*
+33.801 170 m 33.801 167.602 30.199 167.602 30.199 170 c 30.199 172.398 
+33.801 172.398 33.801 170 c h
+33.801 170 m f*
+81.801 186 m 81.801 183.602 78.199 183.602 78.199 186 c 78.199 188.398 
+81.801 188.398 81.801 186 c h
+81.801 186 m f*
+49.801 218 m 49.801 215.602 46.199 215.602 46.199 218 c 46.199 220.398 
+49.801 220.398 49.801 218 c h
+49.801 218 m f*
+81.801 218 m 81.801 215.602 78.199 215.602 78.199 218 c 78.199 220.398 
+81.801 220.398 81.801 218 c h
+81.801 218 m f*
+113.801 218 m 113.801 215.602 110.199 215.602 110.199 218 c 110.199 220.398
+ 113.801 220.398 113.801 218 c h
+113.801 218 m f*
+145.801 218 m 145.801 215.602 142.199 215.602 142.199 218 c 142.199 220.398
+ 145.801 220.398 145.801 218 c h
+145.801 218 m f*
+97.801 234 m 97.801 231.602 94.199 231.602 94.199 234 c 94.199 236.398 
+97.801 236.398 97.801 234 c h
+97.801 234 m f*
+1 0 0 rg
+97.801 266 m 97.801 263.602 94.199 263.602 94.199 266 c 94.199 268.398 
+97.801 268.398 97.801 266 c h
+97.801 266 m f*
+0 1 0 rg
+289.801 138 m 289.801 135.602 286.199 135.602 286.199 138 c 286.199 140.398
+ 289.801 140.398 289.801 138 c h
+289.801 138 m f*
+305.801 154 m 305.801 151.602 302.199 151.602 302.199 154 c 302.199 156.398
+ 305.801 156.398 305.801 154 c h
+305.801 154 m f*
+273.801 154 m 273.801 151.602 270.199 151.602 270.199 154 c 270.199 156.398
+ 273.801 156.398 273.801 154 c h
+273.801 154 m f*
+273.801 186 m 273.801 183.602 270.199 183.602 270.199 186 c 270.199 188.398
+ 273.801 188.398 273.801 186 c h
+273.801 186 m f*
+289.801 202 m 289.801 199.602 286.199 199.602 286.199 202 c 286.199 204.398
+ 289.801 204.398 289.801 202 c h
+289.801 202 m f*
+305.801 186 m 305.801 183.602 302.199 183.602 302.199 186 c 302.199 188.398
+ 305.801 188.398 305.801 186 c h
+305.801 186 m f*
+0 0 1 rg
+481.801 170 m 481.801 167.602 478.199 167.602 478.199 170 c 478.199 172.398
+ 481.801 172.398 481.801 170 c h
+481.801 170 m f*
+1 0 0 rg
+481.801 234 m 481.801 231.602 478.199 231.602 478.199 234 c 478.199 236.398
+ 481.801 236.398 481.801 234 c h
+481.801 234 m f*
+0 1 0 rg
+417.801 202 m 417.801 199.602 414.199 199.602 414.199 202 c 414.199 204.398
+ 417.801 204.398 417.801 202 c h
+417.801 202 m f*
+0 g
+417.801 170 m 417.801 167.602 414.199 167.602 414.199 170 c 414.199 172.398
+ 417.801 172.398 417.801 170 c h
+417.801 170 m f*
+0 1 0 rg
+433.801 186 m 433.801 183.602 430.199 183.602 430.199 186 c 430.199 188.398
+ 433.801 188.398 433.801 186 c h
+433.801 186 m f*
+449.801 202 m 449.801 199.602 446.199 199.602 446.199 202 c 446.199 204.398
+ 449.801 204.398 449.801 202 c h
+449.801 202 m f*
+465.801 186 m 465.801 183.602 462.199 183.602 462.199 186 c 462.199 188.398
+ 465.801 188.398 465.801 186 c h
+465.801 186 m f*
+481.801 202 m 481.801 199.602 478.199 199.602 478.199 202 c 478.199 204.398
+ 481.801 204.398 481.801 202 c h
+481.801 202 m f*
+497.801 186 m 497.801 183.602 494.199 183.602 494.199 186 c 494.199 188.398
+ 497.801 188.398 497.801 186 c h
+497.801 186 m f*
+513.801 202 m 513.801 199.602 510.199 199.602 510.199 202 c 510.199 204.398
+ 513.801 204.398 513.801 202 c h
+513.801 202 m f*
+529.801 186 m 529.801 183.602 526.199 183.602 526.199 186 c 526.199 188.398
+ 529.801 188.398 529.801 186 c h
+529.801 186 m f*
+545.801 202 m 545.801 199.602 542.199 199.602 542.199 202 c 542.199 204.398
+ 545.801 204.398 545.801 202 c h
+545.801 202 m f*
+Q Q
+showpage
+%%Trailer
+end
+%%EOF
diff --git a/Latex/bilder/vertex_separator_illustration.ipe b/Latex/bilder/vertex_separator_illustration.ipe
new file mode 100644
index 0000000000000000000000000000000000000000..62415bb6881e1fdae1957ee9703f0f2393c2850e
--- /dev/null
+++ b/Latex/bilder/vertex_separator_illustration.ipe
@@ -0,0 +1,925 @@
+<?xml version="1.0"?>
+<!DOCTYPE ipe SYSTEM "ipe.dtd">
+<ipe version="70218" creator="Ipe 7.2.20">
+<info created="D:20200726212521" modified="D:20200726212521"/>
+<ipestyle name="basic">
+<symbol name="arrow/arc(spx)">
+<path stroke="sym-stroke" fill="sym-stroke" pen="sym-pen">
+0 0 m
+-1 0.333 l
+-1 -0.333 l
+h
+</path>
+</symbol>
+<symbol name="arrow/farc(spx)">
+<path stroke="sym-stroke" fill="white" pen="sym-pen">
+0 0 m
+-1 0.333 l
+-1 -0.333 l
+h
+</path>
+</symbol>
+<symbol name="arrow/ptarc(spx)">
+<path stroke="sym-stroke" fill="sym-stroke" pen="sym-pen">
+0 0 m
+-1 0.333 l
+-0.8 0 l
+-1 -0.333 l
+h
+</path>
+</symbol>
+<symbol name="arrow/fptarc(spx)">
+<path stroke="sym-stroke" fill="white" pen="sym-pen">
+0 0 m
+-1 0.333 l
+-0.8 0 l
+-1 -0.333 l
+h
+</path>
+</symbol>
+<symbol name="mark/circle(sx)" transformations="translations">
+<path fill="sym-stroke">
+0.6 0 0 0.6 0 0 e
+0.4 0 0 0.4 0 0 e
+</path>
+</symbol>
+<symbol name="mark/disk(sx)" transformations="translations">
+<path fill="sym-stroke">
+0.6 0 0 0.6 0 0 e
+</path>
+</symbol>
+<symbol name="mark/fdisk(sfx)" transformations="translations">
+<group>
+<path fill="sym-fill">
+0.5 0 0 0.5 0 0 e
+</path>
+<path fill="sym-stroke" fillrule="eofill">
+0.6 0 0 0.6 0 0 e
+0.4 0 0 0.4 0 0 e
+</path>
+</group>
+</symbol>
+<symbol name="mark/box(sx)" transformations="translations">
+<path fill="sym-stroke" fillrule="eofill">
+-0.6 -0.6 m
+0.6 -0.6 l
+0.6 0.6 l
+-0.6 0.6 l
+h
+-0.4 -0.4 m
+0.4 -0.4 l
+0.4 0.4 l
+-0.4 0.4 l
+h
+</path>
+</symbol>
+<symbol name="mark/square(sx)" transformations="translations">
+<path fill="sym-stroke">
+-0.6 -0.6 m
+0.6 -0.6 l
+0.6 0.6 l
+-0.6 0.6 l
+h
+</path>
+</symbol>
+<symbol name="mark/fsquare(sfx)" transformations="translations">
+<group>
+<path fill="sym-fill">
+-0.5 -0.5 m
+0.5 -0.5 l
+0.5 0.5 l
+-0.5 0.5 l
+h
+</path>
+<path fill="sym-stroke" fillrule="eofill">
+-0.6 -0.6 m
+0.6 -0.6 l
+0.6 0.6 l
+-0.6 0.6 l
+h
+-0.4 -0.4 m
+0.4 -0.4 l
+0.4 0.4 l
+-0.4 0.4 l
+h
+</path>
+</group>
+</symbol>
+<symbol name="mark/cross(sx)" transformations="translations">
+<group>
+<path fill="sym-stroke">
+-0.43 -0.57 m
+0.57 0.43 l
+0.43 0.57 l
+-0.57 -0.43 l
+h
+</path>
+<path fill="sym-stroke">
+-0.43 0.57 m
+0.57 -0.43 l
+0.43 -0.57 l
+-0.57 0.43 l
+h
+</path>
+</group>
+</symbol>
+<symbol name="arrow/fnormal(spx)">
+<path stroke="sym-stroke" fill="white" pen="sym-pen">
+0 0 m
+-1 0.333 l
+-1 -0.333 l
+h
+</path>
+</symbol>
+<symbol name="arrow/pointed(spx)">
+<path stroke="sym-stroke" fill="sym-stroke" pen="sym-pen">
+0 0 m
+-1 0.333 l
+-0.8 0 l
+-1 -0.333 l
+h
+</path>
+</symbol>
+<symbol name="arrow/fpointed(spx)">
+<path stroke="sym-stroke" fill="white" pen="sym-pen">
+0 0 m
+-1 0.333 l
+-0.8 0 l
+-1 -0.333 l
+h
+</path>
+</symbol>
+<symbol name="arrow/linear(spx)">
+<path stroke="sym-stroke" pen="sym-pen">
+-1 0.333 m
+0 0 l
+-1 -0.333 l
+</path>
+</symbol>
+<symbol name="arrow/fdouble(spx)">
+<path stroke="sym-stroke" fill="white" pen="sym-pen">
+0 0 m
+-1 0.333 l
+-1 -0.333 l
+h
+-1 0 m
+-2 0.333 l
+-2 -0.333 l
+h
+</path>
+</symbol>
+<symbol name="arrow/double(spx)">
+<path stroke="sym-stroke" fill="sym-stroke" pen="sym-pen">
+0 0 m
+-1 0.333 l
+-1 -0.333 l
+h
+-1 0 m
+-2 0.333 l
+-2 -0.333 l
+h
+</path>
+</symbol>
+<symbol name="arrow/mid-normal(spx)">
+<path stroke="sym-stroke" fill="sym-stroke" pen="sym-pen">
+0.5 0 m
+-0.5 0.333 l
+-0.5 -0.333 l
+h
+</path>
+</symbol>
+<symbol name="arrow/mid-fnormal(spx)">
+<path stroke="sym-stroke" fill="white" pen="sym-pen">
+0.5 0 m
+-0.5 0.333 l
+-0.5 -0.333 l
+h
+</path>
+</symbol>
+<symbol name="arrow/mid-pointed(spx)">
+<path stroke="sym-stroke" fill="sym-stroke" pen="sym-pen">
+0.5 0 m
+-0.5 0.333 l
+-0.3 0 l
+-0.5 -0.333 l
+h
+</path>
+</symbol>
+<symbol name="arrow/mid-fpointed(spx)">
+<path stroke="sym-stroke" fill="white" pen="sym-pen">
+0.5 0 m
+-0.5 0.333 l
+-0.3 0 l
+-0.5 -0.333 l
+h
+</path>
+</symbol>
+<symbol name="arrow/mid-double(spx)">
+<path stroke="sym-stroke" fill="sym-stroke" pen="sym-pen">
+1 0 m
+0 0.333 l
+0 -0.333 l
+h
+0 0 m
+-1 0.333 l
+-1 -0.333 l
+h
+</path>
+</symbol>
+<symbol name="arrow/mid-fdouble(spx)">
+<path stroke="sym-stroke" fill="white" pen="sym-pen">
+1 0 m
+0 0.333 l
+0 -0.333 l
+h
+0 0 m
+-1 0.333 l
+-1 -0.333 l
+h
+</path>
+</symbol>
+<pen name="heavier" value="0.8"/>
+<pen name="fat" value="1.2"/>
+<pen name="ultrafat" value="2"/>
+<symbolsize name="large" value="5"/>
+<symbolsize name="small" value="2"/>
+<symbolsize name="tiny" value="1.1"/>
+<arrowsize name="large" value="10"/>
+<arrowsize name="small" value="5"/>
+<arrowsize name="tiny" value="3"/>
+<color name="red" value="1 0 0"/>
+<color name="blue" value="0 0 1"/>
+<color name="green" value="0 1 0"/>
+<color name="yellow" value="1 1 0"/>
+<color name="orange" value="1 0.647 0"/>
+<color name="gold" value="1 0.843 0"/>
+<color name="purple" value="0.627 0.125 0.941"/>
+<color name="gray" value="0.745"/>
+<color name="brown" value="0.647 0.165 0.165"/>
+<color name="navy" value="0 0 0.502"/>
+<color name="pink" value="1 0.753 0.796"/>
+<color name="seagreen" value="0.18 0.545 0.341"/>
+<color name="turquoise" value="0.251 0.878 0.816"/>
+<color name="violet" value="0.933 0.51 0.933"/>
+<color name="darkblue" value="0 0 0.545"/>
+<color name="darkcyan" value="0 0.545 0.545"/>
+<color name="darkgray" value="0.663"/>
+<color name="darkgreen" value="0 0.392 0"/>
+<color name="darkmagenta" value="0.545 0 0.545"/>
+<color name="darkorange" value="1 0.549 0"/>
+<color name="darkred" value="0.545 0 0"/>
+<color name="lightblue" value="0.678 0.847 0.902"/>
+<color name="lightcyan" value="0.878 1 1"/>
+<color name="lightgray" value="0.827"/>
+<color name="lightgreen" value="0.565 0.933 0.565"/>
+<color name="lightyellow" value="1 1 0.878"/>
+<dashstyle name="dotted" value="[1 3] 0"/>
+<dashstyle name="dashed" value="[4] 0"/>
+<dashstyle name="dash dotted" value="[4 2 1 2] 0"/>
+<dashstyle name="dash dot dotted" value="[4 2 1 2 1 2] 0"/>
+<textsize name="large" value="\large"/>
+<textsize name="small" value="\small"/>
+<textsize name="tiny" value="\tiny"/>
+<textsize name="Large" value="\Large"/>
+<textsize name="LARGE" value="\LARGE"/>
+<textsize name="huge" value="\huge"/>
+<textsize name="Huge" value="\Huge"/>
+<textsize name="footnote" value="\footnotesize"/>
+<textstyle name="center" begin="\begin{center}" end="\end{center}"/>
+<textstyle name="itemize" begin="\begin{itemize}" end="\end{itemize}"/>
+<textstyle name="item" begin="\begin{itemize}\item{}" end="\end{itemize}"/>
+<gridsize name="4 pts" value="4"/>
+<gridsize name="8 pts (~3 mm)" value="8"/>
+<gridsize name="16 pts (~6 mm)" value="16"/>
+<gridsize name="32 pts (~12 mm)" value="32"/>
+<gridsize name="10 pts (~3.5 mm)" value="10"/>
+<gridsize name="20 pts (~7 mm)" value="20"/>
+<gridsize name="14 pts (~5 mm)" value="14"/>
+<gridsize name="28 pts (~10 mm)" value="28"/>
+<gridsize name="56 pts (~20 mm)" value="56"/>
+<anglesize name="90 deg" value="90"/>
+<anglesize name="60 deg" value="60"/>
+<anglesize name="45 deg" value="45"/>
+<anglesize name="30 deg" value="30"/>
+<anglesize name="22.5 deg" value="22.5"/>
+<opacity name="10%" value="0.1"/>
+<opacity name="30%" value="0.3"/>
+<opacity name="50%" value="0.5"/>
+<opacity name="75%" value="0.75"/>
+<tiling name="falling" angle="-60" step="4" width="1"/>
+<tiling name="rising" angle="30" step="4" width="1"/>
+</ipestyle>
+<page>
+<layer name="alpha"/>
+<view layers="alpha" active="alpha"/>
+<use layer="alpha" matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="256 832" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="256 800" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="256 640" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="256 608" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="256 576" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="256 544" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="272 560" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="288 576" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="304 592" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="320 608" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="240 560" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="224 576" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="208 592" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="192 608" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="240 816" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="224 800" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="208 784" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="192 768" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="272 816" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="288 800" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="304 784" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="320 768" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="192 736" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="192 704" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="192 672" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="192 640" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="320 640" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="320 672" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="320 704" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="320 736" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="272 784" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="240 784" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="224 768" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="288 768" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="208 752" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="304 752" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="224 736" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="288 736" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="208 720" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="304 720" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="224 704" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="288 704" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="208 688" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="240 688" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="272 688" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="304 688" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="208 656" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="208 624" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="224 672" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="224 640" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="224 608" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="240 656" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="240 624" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="240 592" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="272 656" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="272 624" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="272 592" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="288 672" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="288 640" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="288 608" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="304 624" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="304 656" size="normal" stroke="black"/>
+<path matrix="1 0 0 1 160 -64" stroke="black">
+64 768 m
+128 832 l
+192 768 l
+192 608 l
+128 544 l
+64 608 l
+64 736 l
+128 800 l
+144 816 l
+144 816 l
+</path>
+<path matrix="1 0 0 1 160 -64" stroke="black">
+64 768 m
+64 736 l
+64 736 l
+</path>
+<path matrix="1 0 0 1 160 -64" stroke="black">
+80 784 m
+80 592 l
+80 592 l
+</path>
+<path matrix="1 0 0 1 160 -64" stroke="black">
+96 800 m
+96 576 l
+96 576 l
+</path>
+<path matrix="1 0 0 1 160 -64" stroke="black">
+112 816 m
+112 560 l
+112 560 l
+</path>
+<path matrix="1 0 0 1 160 -64" stroke="black">
+128 832 m
+128 512 l
+128 512 l
+</path>
+<path matrix="1 0 0 1 160 -64" stroke="black">
+144 816 m
+144 560 l
+144 560 l
+</path>
+<path matrix="1 0 0 1 160 -64" stroke="black">
+160 800 m
+160 576 l
+160 576 l
+</path>
+<path matrix="1 0 0 1 160 -64" stroke="black">
+176 784 m
+176 592 l
+176 592 l
+</path>
+<path matrix="1 0 0 1 160 -64" stroke="black">
+64 704 m
+160 800 l
+160 800 l
+</path>
+<path matrix="1 0 0 1 160 -64" stroke="black">
+176 784 m
+64 672 l
+64 672 l
+</path>
+<path matrix="1 0 0 1 160 -64" stroke="black">
+64 640 m
+192 768 l
+192 768 l
+</path>
+<path matrix="1 0 0 1 160 -64" stroke="black">
+192 736 m
+64 608 l
+64 608 l
+</path>
+<path matrix="1 0 0 1 160 -64" stroke="black">
+80 592 m
+192 704 l
+192 704 l
+</path>
+<path matrix="1 0 0 1 160 -64" stroke="black">
+192 672 m
+96 576 l
+96 576 l
+</path>
+<path matrix="1 0 0 1 160 -64" stroke="black">
+112 560 m
+192 640 l
+192 640 l
+</path>
+<path matrix="1 0 0 1 160 -64" stroke="black">
+64 640 m
+144 560 l
+144 560 l
+</path>
+<path matrix="1 0 0 1 160 -64" stroke="black">
+64 672 m
+160 576 l
+160 576 l
+</path>
+<path matrix="1 0 0 1 160 -64" stroke="black">
+64 704 m
+176 592 l
+176 592 l
+</path>
+<path matrix="1 0 0 1 160 -64" stroke="black">
+64 736 m
+192 608 l
+192 608 l
+</path>
+<path matrix="1 0 0 1 160 -64" stroke="black">
+64 768 m
+192 640 l
+192 640 l
+</path>
+<path matrix="1 0 0 1 160 -64" stroke="black">
+80 784 m
+192 672 l
+192 672 l
+</path>
+<path matrix="1 0 0 1 160 -64" stroke="black">
+96 800 m
+192 704 l
+192 704 l
+</path>
+<path matrix="1 0 0 1 160 -64" stroke="black">
+112 816 m
+192 736 l
+192 736 l
+</path>
+<path matrix="1 0 0 1 160 -64" stroke="black">
+128 832 m
+192 768 l
+192 768 l
+</path>
+<use matrix="1 0 0 1 32 -96" name="mark/disk(sx)" pos="256 544" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="256 736" size="normal" stroke="blue"/>
+<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="256 672" size="normal" stroke="red"/>
+<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="256 832" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="256 800" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="256 768" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="256 608" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="256 576" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="256 544" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="272 560" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="288 576" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="304 592" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="320 608" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="240 560" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="224 576" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="208 592" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="192 608" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="240 816" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="224 800" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="208 784" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="192 768" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="272 816" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="288 800" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="304 784" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="320 768" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="192 672" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="192 640" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="320 640" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="320 672" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="272 784" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="240 784" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="224 768" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="288 768" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="208 752" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="240 752" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="272 752" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="304 752" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="208 656" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="208 624" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="224 672" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="224 640" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="224 608" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="240 656" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="240 624" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="240 592" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="272 656" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="272 624" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="272 592" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="288 672" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="288 640" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="288 608" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="304 624" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="304 656" size="normal" stroke="black"/>
+<path matrix="1 0 0 1 -32 -64" stroke="black">
+64 768 m
+128 832 l
+192 768 l
+192 608 l
+128 544 l
+64 608 l
+64 736 l
+128 800 l
+144 816 l
+144 816 l
+</path>
+<path matrix="1 0 0 1 -32 -64" stroke="black">
+64 768 m
+64 736 l
+64 736 l
+</path>
+<path matrix="1 0 0 1 -32 -64" stroke="black">
+80 784 m
+80 592 l
+80 592 l
+</path>
+<path matrix="1 0 0 1 -32 -64" stroke="black">
+96 800 m
+96 576 l
+96 576 l
+</path>
+<path matrix="1 0 0 1 -32 -64" stroke="black">
+112 816 m
+112 560 l
+112 560 l
+</path>
+<path matrix="1 0 0 1 -32 -64" stroke="black">
+128 832 m
+128 512 l
+128 512 l
+</path>
+<path matrix="1 0 0 1 -32 -64" stroke="black">
+144 816 m
+144 560 l
+144 560 l
+</path>
+<path matrix="1 0 0 1 -32 -64" stroke="black">
+160 800 m
+160 576 l
+160 576 l
+</path>
+<path matrix="1 0 0 1 -32 -64" stroke="black">
+176 784 m
+176 592 l
+176 592 l
+</path>
+<path matrix="1 0 0 1 -32 -64" stroke="black">
+64 704 m
+160 800 l
+160 800 l
+</path>
+<path matrix="1 0 0 1 -32 -64" stroke="black">
+176 784 m
+64 672 l
+64 672 l
+</path>
+<path matrix="1 0 0 1 -32 -64" stroke="black">
+64 640 m
+192 768 l
+192 768 l
+</path>
+<path matrix="1 0 0 1 -32 -64" stroke="black">
+192 736 m
+64 608 l
+64 608 l
+</path>
+<path matrix="1 0 0 1 -32 -64" stroke="black">
+80 592 m
+192 704 l
+192 704 l
+</path>
+<path matrix="1 0 0 1 -32 -64" stroke="black">
+192 672 m
+96 576 l
+96 576 l
+</path>
+<path matrix="1 0 0 1 -32 -64" stroke="black">
+112 560 m
+192 640 l
+192 640 l
+</path>
+<path matrix="1 0 0 1 -32 -64" stroke="black">
+64 640 m
+144 560 l
+144 560 l
+</path>
+<path matrix="1 0 0 1 -32 -64" stroke="black">
+64 672 m
+160 576 l
+160 576 l
+</path>
+<path matrix="1 0 0 1 -32 -64" stroke="black">
+64 704 m
+176 592 l
+176 592 l
+</path>
+<path matrix="1 0 0 1 -32 -64" stroke="black">
+64 736 m
+192 608 l
+192 608 l
+</path>
+<path matrix="1 0 0 1 -32 -64" stroke="black">
+64 768 m
+192 640 l
+192 640 l
+</path>
+<path matrix="1 0 0 1 -32 -64" stroke="black">
+80 784 m
+192 672 l
+192 672 l
+</path>
+<path matrix="1 0 0 1 -32 -64" stroke="black">
+96 800 m
+192 704 l
+192 704 l
+</path>
+<path matrix="1 0 0 1 -32 -64" stroke="black">
+112 816 m
+192 736 l
+192 736 l
+</path>
+<path matrix="1 0 0 1 -32 -64" stroke="black">
+128 832 m
+192 768 l
+192 768 l
+</path>
+<use matrix="1 0 0 1 -160 -96" name="mark/disk(sx)" pos="256 544" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="256 736" size="normal" stroke="blue"/>
+<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="256 832" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="256 800" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="256 768" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="256 640" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="256 608" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="256 576" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="256 544" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="272 560" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="288 576" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="304 592" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="320 608" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="240 560" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="224 576" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="208 592" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="192 608" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="240 816" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="224 800" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="208 784" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="192 768" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="272 816" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="288 800" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="304 784" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="320 768" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="192 672" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="192 640" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="320 640" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="320 672" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="320 736" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="272 784" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="240 784" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="224 768" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="288 768" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="208 752" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="240 752" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="272 752" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="304 752" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="224 736" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="288 736" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="208 688" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="240 688" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="272 688" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="304 688" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="208 656" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="208 624" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="224 672" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="224 640" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="224 608" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="240 656" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="240 624" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="240 592" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="272 656" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="272 624" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="272 592" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="288 672" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="288 640" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="288 608" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="304 624" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="304 656" size="normal" stroke="black"/>
+<path matrix="1 0 0 1 352 -64" stroke="black">
+64 768 m
+128 832 l
+192 768 l
+192 608 l
+128 544 l
+64 608 l
+64 736 l
+128 800 l
+144 816 l
+144 816 l
+</path>
+<path matrix="1 0 0 1 352 -64" stroke="black">
+64 768 m
+64 736 l
+64 736 l
+</path>
+<path matrix="1 0 0 1 352 -64" stroke="black">
+80 784 m
+80 592 l
+80 592 l
+</path>
+<path matrix="1 0 0 1 352 -64" stroke="black">
+96 800 m
+96 576 l
+96 576 l
+</path>
+<path matrix="1 0 0 1 352 -64" stroke="black">
+112 816 m
+112 560 l
+112 560 l
+</path>
+<path matrix="1 0 0 1 352 -64" stroke="black">
+128 832 m
+128 512 l
+128 512 l
+</path>
+<path matrix="1 0 0 1 352 -64" stroke="black">
+144 816 m
+144 560 l
+144 560 l
+</path>
+<path matrix="1 0 0 1 352 -64" stroke="black">
+160 800 m
+160 576 l
+160 576 l
+</path>
+<path matrix="1 0 0 1 352 -64" stroke="black">
+176 784 m
+176 592 l
+176 592 l
+</path>
+<path matrix="1 0 0 1 352 -64" stroke="black">
+64 704 m
+160 800 l
+160 800 l
+</path>
+<path matrix="1 0 0 1 352 -64" stroke="black">
+176 784 m
+64 672 l
+64 672 l
+</path>
+<path matrix="1 0 0 1 352 -64" stroke="black">
+64 640 m
+192 768 l
+192 768 l
+</path>
+<path matrix="1 0 0 1 352 -64" stroke="black">
+192 736 m
+64 608 l
+64 608 l
+</path>
+<path matrix="1 0 0 1 352 -64" stroke="black">
+80 592 m
+192 704 l
+192 704 l
+</path>
+<path matrix="1 0 0 1 352 -64" stroke="black">
+192 672 m
+96 576 l
+96 576 l
+</path>
+<path matrix="1 0 0 1 352 -64" stroke="black">
+112 560 m
+192 640 l
+192 640 l
+</path>
+<path matrix="1 0 0 1 352 -64" stroke="black">
+64 640 m
+144 560 l
+144 560 l
+</path>
+<path matrix="1 0 0 1 352 -64" stroke="black">
+64 672 m
+160 576 l
+160 576 l
+</path>
+<path matrix="1 0 0 1 352 -64" stroke="black">
+64 704 m
+176 592 l
+176 592 l
+</path>
+<path matrix="1 0 0 1 352 -64" stroke="black">
+64 736 m
+192 608 l
+192 608 l
+</path>
+<path matrix="1 0 0 1 352 -64" stroke="black">
+64 768 m
+192 640 l
+192 640 l
+</path>
+<path matrix="1 0 0 1 352 -64" stroke="black">
+80 784 m
+192 672 l
+192 672 l
+</path>
+<path matrix="1 0 0 1 352 -64" stroke="black">
+96 800 m
+192 704 l
+192 704 l
+</path>
+<path matrix="1 0 0 1 352 -64" stroke="black">
+112 816 m
+192 736 l
+192 736 l
+</path>
+<path matrix="1 0 0 1 352 -64" stroke="black">
+128 832 m
+192 768 l
+192 768 l
+</path>
+<use matrix="1 0 0 1 224 -96" name="mark/disk(sx)" pos="256 544" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="192 704" size="normal" stroke="green"/>
+<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="224 704" size="normal" stroke="green"/>
+<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="256 704" size="normal" stroke="green"/>
+<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="288 704" size="normal" stroke="green"/>
+<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="320 704" size="normal" stroke="green"/>
+<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="272 720" size="normal" stroke="green"/>
+<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="304 720" size="normal" stroke="green"/>
+<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="288 736" size="normal" stroke="green"/>
+<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="320 736" size="normal" stroke="green"/>
+<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="224 736" size="normal" stroke="green"/>
+<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="208 720" size="normal" stroke="green"/>
+<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="192 736" size="normal" stroke="green"/>
+<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="240 720" size="normal" stroke="green"/>
+<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="208 688" size="normal" stroke="green"/>
+<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="240 688" size="normal" stroke="green"/>
+<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="272 688" size="normal" stroke="green"/>
+<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="304 688" size="normal" stroke="green"/>
+<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="256 672" size="normal" stroke="green"/>
+<use matrix="1 0 0 1 -160 -64" name="mark/disk(sx)" pos="256 640" size="normal" stroke="red"/>
+<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="256 768" size="normal" stroke="green"/>
+<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="272 752" size="normal" stroke="green"/>
+<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="240 752" size="normal" stroke="green"/>
+<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="240 720" size="normal" stroke="green"/>
+<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="256 704" size="normal" stroke="green"/>
+<use matrix="1 0 0 1 32 -64" name="mark/disk(sx)" pos="272 720" size="normal" stroke="green"/>
+<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="256 736" size="normal" stroke="blue"/>
+<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="256 672" size="normal" stroke="red"/>
+<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="192 704" size="normal" stroke="green"/>
+<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="192 736" size="normal" stroke="black"/>
+<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="208 720" size="normal" stroke="green"/>
+<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="224 704" size="normal" stroke="green"/>
+<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="240 720" size="normal" stroke="green"/>
+<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="256 704" size="normal" stroke="green"/>
+<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="272 720" size="normal" stroke="green"/>
+<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="288 704" size="normal" stroke="green"/>
+<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="304 720" size="normal" stroke="green"/>
+<use matrix="1 0 0 1 224 -64" name="mark/disk(sx)" pos="320 704" size="normal" stroke="green"/>
+</page>
+</ipe>
diff --git a/Latex/conclusion.tex b/Latex/conclusion.tex
new file mode 100644
index 0000000000000000000000000000000000000000..3ffa2b8737298223995cf001f675c6c3c1063d0b
--- /dev/null
+++ b/Latex/conclusion.tex
@@ -0,0 +1,9 @@
+\section{Conclusion}\raggedbottom 
+Given the fact that we adopted the model from \citep{myky} and only implemented it in another framework the models shortcomings are still present. It disregards different aspects that play a role in the venation pattern for real plants. 
+
+Additionally our implementation, in its current version, is not capable of generating optimal solutions in a reasonable amount of time for the leaf representing graphs. The ASP implementation performs better on these graphs and therefore is the better choice for to implement the model. Even after different approaches to reduce the runtime were evaluated the ASP implementation performed better. Nevertheless there are still approaches that can be evaluated. 
+
+The next step for the ILP implementation should be to invent a symmetry breaker that reduces the number of symmetrical unconnected integer solutions that are determined in the iteration process. Additionaly it should be evaluated which type of constraints can be further preadded that would otherwise be added anyway in the process. Another important point is to find heuristics that allow to determine suffiecient lower bounds faster. 
+
+Though it is also reasonable to implement the suggestions from \citet{myky} to further improve the ASP implementation as it outperformed the ILP implementation. 
+\pagebreak
diff --git a/Latex/definitions.tex b/Latex/definitions.tex
index b8105d0772f80359e0ffa45a4a5a3addd875b39b..3ac1a2145c476cade630143fc07bd072e3656bce 100644
--- a/Latex/definitions.tex
+++ b/Latex/definitions.tex
@@ -7,7 +7,7 @@
 \begin{definition}[Neighborhood]
 Given an undirected Graph $G = (V,E)$. Let $N(v)$ denote the neighborhood of a vertex $v$. $N(v)$ can formally be described as follows: \[w \in N(v) \Leftrightarrow \exists (v,w) \in E\]
 \end{definition}
-(Maybe leaf base case out as the s.t. part ist different from k-hop version. So after introducing in the implementation part it would be replaced.)
+(Maybe leaf base case out as the s.t. part is different from k-hop version. So after introducing in the implementation part it would be replaced.)
 \begin{definition}[Dominating Set]
 Given an undirected Graph $G = (V,E)$ a Dominating Set is a subset $DS \subset V$ such that each vertex $v \in V$ is either included in the Dominating Set or adjacent to at least one vertex which is included in the Dominating Set. So a for a Dominating Set $DS$ the following statement is valid
 \[\forall v \in V \setminus DS: \exists u \in DS, u \in N(v)\]
@@ -19,7 +19,7 @@ The neighborhood of a single vertex $N(v)$ is defined above. Let the neighborhoo
 Let $k \in \mathbb{N}$. 
 With help of this definition the k-neighborhood $N_k(v)$ of a single vertex $v \in V$ can recursively be defined as: 
 \[N_k(v) := N(N_{k-1}(v)) \setminus v\]
-wheras $N_1(v) = N(v)$. So $N_k(v)$ is a set of all vertices which can be reached with at most $k$ steps starting from $v$.
+whereas $N_1(v) = N(v)$. So $N_k(v)$ is a set of all vertices which can be reached with at most $k$ steps starting from $v$.
 \end{definition}
 
 \begin{definition}[k-hop Dominating Set]
diff --git a/Latex/discussion.tex b/Latex/discussion.tex
new file mode 100644
index 0000000000000000000000000000000000000000..448b768baab94c40c37077216e2854118a241a0b
--- /dev/null
+++ b/Latex/discussion.tex
@@ -0,0 +1,28 @@
+\section{Discussion}\raggedbottom 
+As already mentioned and as \citet{myky} stated our model has some shortcomings and disregards aspects that influence an optimal venation pattern in real plants. We only focus on minimizing the number of cells that have to be transformed into vein cells, under the condition that the entire leaf can still be supplied with water and nutrients. Doing so the number of photosynthetic active cells and their outcome should be maximized. Our model completely disregards the vein hierarchy and among other things that environmental circumstances also influence the venation pattern \citep{bio_veinh}. The fact that plants try to minimize their total branch length and the transport distance for nutrients \citep{bio_netw} is also disregarded. 
+
+As our results revealed/ showed the neither the ILP implementation nor the ASP implementation are capable of generating solutions for our leaf graphs in a reasonable amount of time. The ILP implementation is incapable of finding an optimal solution in under 1000 seconds for the instance \textit{middle-leaf}, having only 62 nodes, with parameter $k = 1$. The ASP implementation on the other hand needed only 154 seconds to find an optimal solution. However both version find an appropriate upper bound in less than 1 second. The rest of the solving time is entirely used to close the gap from the lower bound. 
+The instance \textit{GNM\_ 500\_ 62375} on the contrary has 500 nodes but the ILP implementation nevertheless finds a solution in 154 seconds, whereas the ASP version could not find an optimal solution after 1000 seconds. As the results show the same difference in runtime on other rather spare and large random graphs the ILP version seems to perform better on random graphs in general. As the results for the random graphs indicated our ILP implementation might be a reasonable approach applied to other problems which can be modelled with the \textit{Minimum Connected (rooted) k-hop Dominating Set} depending on the structure of the input instances. 
+
+As well as \citet{myky} made the observation for the ASP implementation that an increasing parameter $k$ reduces the runtime significantly our tests showed the same effect using the ILP implementation. For the random graphs and parameter $k = 2$ or $k = 3$ every instance could be solved in less than 1 second. It should also be noted that for most of the instances in this case only a few or even none constraints needed to be added lazily. Optimal solutions consisted in this case for the most instances only of the single root node or contained also a few additional nodes. 
+These results can not unconditionally applied to other real world problems as their graphs can have specific structures that differ from random graphs. 
+Also on our leaf graphs an increasing $k$ implied a better runtime. However in the case of $k = 2$ and $k = 3$ the instances \textit{maple} and \textit{asymmetric} could not be solved under 1000 seconds. We can not simply arbitrarily increase the parameter $k$ in our model as vein cells must be in a range of 2-3 cells from mesophyl cells. \citep{nachschauen_auf_welcher_seite_und_aus_references_übernehmen}. 
+The runtime of the grid graphs also went down with increased $k$. For this graphs even with $k = 1$ an optimal solution could be found in under 1000 seconds. Admittedly all instances only had 64 nodes. As for the instance \textit{GRID\_ 8\_ 8} the time to find an optimal solution was 775 seconds it can be assumed that for larger instances the runtime exceeds 1000 seconds. 
+
+Using the \textit{intermediate node constraints} reduced the runtime the most. However in the most cases this constraints added unnecessary nodes to a solution which are not included without using this constraint. Nonetheless it could be considered to use this method to create approximative solutions. But for this purpose it would be desirable to formally prove the maximal amount of extra nodes in relation to an optimal solution. However our results show, at least exemplarily, that in most cases even without this additional constraint in rather short time appropriate upper bounds were established. 
+For the instance \textit{middle-leaf} for example the ILP implementation as well as the ASP implementation found an upper bound in less than 1 second that does not differ from an optimal solution. Thus an approximation for the upper bound does not seem tobe necessary. In fact a heuristic that generates an appropriate lower bound is much more desirable as closing the gap to the upper bound takes the major amount of time. Even for the rather large instance \textit{maple} an upper bound that does not differ from the optimal solution using the \textit{intermediate node constraint} is found after 29 seconds. At best this constraint could be used to evaluate how good upper bounds from the solving process are. But for this purpose an approximation factor would be necessary. For the \textit{asymmetric} an optimal solution could not be found under 1000 seconds even using this constraint. According to this there is still need for optimisation to create a satisfying implementation even if this constraint is used. 
+
+According to the current information using vertex separators seem to be the best method to induce connectivity on graphtheoretical problems. Alternative approaches from \citep{mtz} or \citep{klau} were not as succesfull for the corresponding problems in comparison to formulations that use vertex separators. Especially for the steiner tree problem \citet{fischetti_steiner_t} could achieve good results compared to other approaches. Also \citet{bomersbach} could achieve good results for the Connected Maximum Coverage Problem. In \citep{forrest} and \citep{fault_tolerant} this method was evaluated as promising. 
+For our problem and especially for the graphs that represent our leafs this method was not satisfying. The same applies to quadratical grid graphs. We assume the high number of unconnected integer solutions that are generated in the iteration process as beeing crucial. These solutions are most likely in some manner symmetrical such that an appropriate symmetry breaker could reduce the runtime drastically. 
+
+In general the ASP implementation performed better on our graphs representing the leafs. \citet{myky} mentioned different aspects in the conclusion of her thesis how the ASP implementation can be improved. As this implementation performed better than the ILP implementation so far it might be more reasonable to improve the ASP implementation rather than the ILP. 
+
+Another aspect that our tests revealed is that espacially on such instance where there is a rather large gap between the size of an optimal unconnected solution and an optimal connected solution the runtime is relatively high. This is probably related to the fact that in such cases many constraints were added lazily, which indicates that there is a high amount of unconnected integer solutions. For the instances where the gap was rather tight the runtime was much better. In the tests from \citep{myky} an ILP implementation for the unconnected Minimum $k$-hop Dominanting Set could create solutions much faster than the ASP implementation. This specific superiority is reflected here such that quickly valid solutions could be generated and it only neede to be verified if the solution is connected and otherwise only a few constraints needed to be added. 
+
+The density has also shown as a parameter which highly influences the runtime. On sparse graphs both the ILP implementation and the ASP implementation performed rather bad. For the random graphs instances with 250 and 500 nodes coould not be solved under 1000 seconds on rather sparse graphs with parameter $k = 1$. Our leaf graphs are all very sparse such that this effect plays a role as well. With increasing size the densitiy of our graphs even decreases. 
+
+Preadding vertex separator constraints had an measurable influence on the runtime. Unfortunately this effect alone could not improve the runtime in a manner that a satisfying implementation for our model could be created. Despite the fact that many constraints were preadded there were still a lot constraints that were added in the iteration process. It could make sense to identify the types of constraints that are still added in the solution process to prevent unnecessary iterations when they are added beforehand. This might lead to a better runtime. 
+
+Another approach to improve the implementation can be to add violated constraints not only after integer solutions are created but already when LP relaxations are calculated. This approach was used in \citep{forrest} and lead to sufficient LP bounds. 
+Eine weitere Möglichkeit, das Verfahren zu optimieren, wäre es, constraints nicht nur dann hinzuzufügen, wenn eine ganzzahlige Lösung ermittelt wurde, sondern schon dann, wenn eine LP relaxierung ermittelt wird. Dieser Ansatz wurde auch in \citep{forrest} verfolgt. Dabei konnten sehr gute Erfolge hinsichtlich der Lp Bound erzielt werden. 
+\pagebreak
diff --git a/Latex/implementation.tex b/Latex/implementation.tex
index 6c73075d1f5e582c3aba216b26a6f442fde40fdd..0ccbd7a5adb0550aa87ce2837fdae1bc9c8db645 100644
--- a/Latex/implementation.tex
+++ b/Latex/implementation.tex
@@ -1,87 +1,28 @@
 \section{Implementation} \raggedbottom
-\subsection{Softwarestack?}
-\subsection{General?(better name)}
-Our implementation is node based which means that we only use decison variables for nodes and not for edges. 
-So we assigne a variable $x_v \in \{0,1\}$ for every $v \in V$, whereas $x_v = 1 \Leftrightarrow v \in DS$.
-(Maybe leaf classical dominating Set out?)
-\subsection{Minumum Dominating Set}
-As we try to minimize the number of vertices in the dominating set our ILP is given as:(Obvious/ useless phrase?) \\
-\textit{objective target}: 
-\begin{equation} \label{obj}
-min\{\sum_{v \in V}{x_v}\}
-\end{equation}
-\textit{subject to:}
-\begin{equation} \label{base}
-\sum_{w \in N(v)}{x_w} + x_v \geq 1, \forall v \in V
-\end{equation}
-The family of inequalities \eqref{base} is an ILP Version of the formal definition. It says that each vertex or at least one of its neighbors has to be included in the dominating set. 
-
-\subsection{Minimum $k$-hop Dominating Set}
-The objective target for this problem is the same as \eqref{base}. But the family of inequalities \eqref{base} is not valid for this case. Instead another famility of inequalities is valid: \\
-\begin{equation} \label{khop}
-\sum_{w \in N_k(v)}{x_w} \geq x_v, \forall v \in V
-\end{equation}
-This family of inequalities is a serves to model the requierement that each vertex or at least one member of the k-neighborhood has to be included in the dominating set.
-(If classical dominating set is left out, maybe mention case k = 1)
-
-\subsection{Connectivity}
-To enforce connectivity(using ILP)there are different approaches. 
-\subsubsection{Vertex separators}
-On approach is to use so called vertex separators. In \citep{bomersbach} and \citep{fischetti_steiner_t} the authors used this approach to create ILP based algorithms to solve other graphtheoretical optimisation problems which require the solution to be connected. (In both papers it is mentioned that those separators define the connected subgraph polytope. Maybe mention as well?) In both publications this approach showed to be very successful as their algorithms outperformed previous state of the art algorithms. (Maybe to general and too strong?) So it seemed reasonable to us to use it as well.(Unneccessary phrase?)\\
-\\
-Let $v,w \in V$. A v-w-separator(Maybe textit?/ Maybe other notation) is a subset $S_{v,w} \subset V$ such that $G[V-S_{v,w}]$ has no path between $v$ and $w$. A minimal v-w-separator $S_{{v,w}_{min}}$ is a v-w-separator where no vertex can be removed. If a vertex is removed it no longer separates $v$ and $w$. (Maybe sounds "too dumb"? Look into explanation of other papers.) Let $S(v,w)$ (Use different notation. This is misleading) denote the family of all minimal v-w-separators. \\
-The following family of inequalities taken from \citep{bomersbach} is used to enforce connectivity: 
-
-
-\begin{equation} \label{sep}
-x_v + x_w \leq \sum_{u \in S_{v,w}}{x_u} + 1, \forall v, w \in V, v \neq w, \forall S_{v,w} \in S(v,w)
-\end{equation}
-
-This inequalities require that for each combination of two vertices $v$ and $w$ if both vertices included in the dominating set at least one vertex which separates them has also to be included. \\
-In contrast to the problem from \citep{bomersbach} we have a predefined root node which must be part of the solution. So for our case it's sufficient to only use vertex separators that separate the connected component which includes the root node and the other connected components. In \citep{forrest} the authors introduced ILP-formulations for different problems motivated by forrest planning. One particular problem also had a predefined root node and demanded connectivity. They also used vertex separators to induce connectivity. For the particular problem they only used vertex separators that separate the root node from other components. As their tests showed and as our tests confirm this reduces the runtime.\\
-\citep{bomersbach} states that as the number of vertex separators is potentially exponential this can create an exponential number of constraints(Previously always said inequalities. Might think about terminology again). Too many constraints would potentially overload the model(Maybe cite fischetti-steiner). This would increase the runtime as a lot of constranints had to be obeyed which may not be necessary to induce connectivity in the solution. 
-So in \citep{bomersbach}, \citep{fischetti_steiner_t} and \citep{forrest} they treated this constraints as lazy constraints which means that none of those constraints are included in the initial model. So iteratively integer solutions are resolved. If an integer solution is not connected minimal vertex separators which separate single components(In our case connected components and the root-component?) are identified via the following algorithms 
-\begin{algorithm}[H]
-\SetAlgoLined
-	$DS^* := \{v | x_v = 1\}$ \\
-	$G' := G[DS]$\\
-	$C := $ set of all disjunct connected components\\
-	$c_{root} := $ connected component that contains $v_{root}$\\
-	\For{all components $c$ in $C \setminus \{c_{root}\}$} {
-		$v := $ any node from $c$\\
-		$s_1 := $ findMinVertexSeparator($G$, $DS^*$, $v \in c$, $v_{root}$, $c_{root}$)\\
-		$s_2 :=$ findMinVertexSeparator($G$, $DS^*$, $v_{root}$, $v \in c$))\\
-		\For{all $w_1 \in c$} {
-			add the following constraint to the model: $\sum_{s \in s_1}{x_s} \geq x_{w_1} + x_{v_{root}} - 1$\\
-		}
-		\For{all $w_2 \in c_{root}$} {
-			add the following constraint to the model: $\sum_{s \in s_2}{x_s} \geq x_{w_2} + x_{v} -1 $		
-		}
-	}
-\caption{Add violated constraints}
-\end{algorithm}
-
-\begin{algorithm}[H] \label{minSep}
-\SetAlgoLined
-	$N(c_v) := $ neighbors of nodes of $c_w$ in $G$ (Maybe use the formal definition from methods?)\\
-	$G' := G$ with all edges between vertices in $c_v \cup N(c_v)$ removed\\
-	$R_w := $ vertices that can be reached from $w$ in $G'$\\
-	\Return $N(c_v) \cap R_w$
-\caption{findMinVertexSeparator($G$, $DS^*$, $v \in c_v$, $w$, $c_v$)}
-\end{algorithm}
-
-The constraints \eqref{sep} containing this separators are then added to the model and the iteration process continues until a connected integer solution is found. Algorithm 2 is the same linear time algorithm as used in \citep{bomersbach} for to identify minimal vertex separators.\\
-For the case that there is no optimal solution of size $1$ an additional constraint is added to tighten up the feasible region and to prevent unneccessary iterations. 
-\begin{equation} \label{neigh}
-x_v \leq \sum_{w \in N(v)} x_w, \forall v \in V
-\end{equation}
-This constraint demands that for each vertex which is part of the dominating set at least one of its neighbors is also included. In \citep{bomersbach} and \citep{fischetti_steiner_t} this constraint is also part of the model. (Maybe mention that the "neighborhood" is always a minimum separator so this type of inequalities are valid)
-
-\subsection{Minimum connected $k$-hop Dominating Set} \label{khopmodel}
-A connected $k$-hop dominating set is a $k$-hop dominating set DS such that $G[DS]$ is connected.(Maybe refer to methods as this is redundant?). Its ILP-Formulation consists of the objective target \eqref{obj} and constraints \eqref{khop} and a collection of constraints to induce connectivity(In the future different types of potential constraints should be added). 
-
-\subsection{Minimum rooted connected $k$-hop Dominating Set}
-Let $v_{root} \in V$ be the predefined root.The ILP-Model of this problem is the ILP-Model of \ref{khopmodel} enriched with following constraint. 
-\begin{equation} \label{root}
-x_{v_{root}} \geq 1
-\end{equation}
\ No newline at end of file
+Now, we specify the implementation of the ILP-formulations from the Methods section. We implemented the ILP-formulations and Algorithms \ref{alg:addConst} and \ref{alg:minSep} using Python version 3.7.5. As branch and cut framework and MIP-solver we use Gurobi version 9.0.2. Gurobi offers a Python interface called \textit{gurobipy} which can be called from inside python scripts. This interface offers access to functions included in Gurobi. 
+Our implementation is embedded in a conda package. The package is called \textit{k\_ hop\_ dominating\_ set\_ gurobi}. The source of the package  can be found on \url{https://gitlab.cs.uni-duesseldorf.de/albi/albi-students/bachelor-mario-surlemont/}. 
+The package itself can be build via 
+\begin{lstlisting}[language=bash, frame=none, basicstyle=\small]
+conda build .
+\end{lstlisting}
+After heading into the directory. 
+To build the package \textit{conda-build} needs to be installed. 
+
+Afterwards the package can be installed via 
+\begin{lstlisting}[language=bash, frame=none]
+conda install --use-local k_hop_dominating_set_gurobi
+\end{lstlisting}
+
+It holds the dependencies \textit{networkX}, \textit{matplotlib.pyplot} and \textit{gurobipy}.
+
+The vertex separator constraints as well as the MTZ constraints can be chosen. The choice can be specified via the optional argument \textit{-mtz}, for the use of MTZ-constraints. By default the vertex separators are chosen. If required the additional constraints that have been presented in the method section can also be added to the model via the optional argument \textit{-imn| -rpl| -gaus| -pre} with rpl as abbreviation for the naive constraint to reduce the path length and gaus as abbreviation for the constraint involing the gaussian sum formula. The argument \textit{-pre} adds separators to the model before the solution process is started.  When the intermediate node constraint is added via \textit{-imn} the generated solutions might not be optimal anymore. 
+
+As input networkx graphs stored as ``.graphml'' or ``.gml'' can be used. Also ``.lp'' files from \citep{myky} can be used. A full programm call is 
+\begin{lstlisting}[language=bash, frame=none, basicstyle=\small]
+k_hop_dominating_set_gurobi (-mtz) (-inm) (-rpl) (-gaus) (-pre) graph.graphml k
+\end{lstlisting} 
+
+If the vertex separators are chosen to induce connectivity a lazy approach is used. Gurobi offers a callback function which is called during the solution procedure when different events occur. The function offers a code that communicates the type of the occured event. When the callback code \textit{MIPSOLVE} is communicated an mixed ILP-solution was generated. That is a solution where those variables that must be integers are integers while those variables which do not need to be intergers can be arbitrarily chosen (with respect to the inequalities). 
+As we only have integer variables in our model the \textit{MIPSOLVE} code tells us that an integer solution $D^*$ was generated. In this case we check if the graph is connected. We use a function that is included in networkx to check if the graph $G[D^*]$ is connected. If not, algorithm \ref{alg:addConst} is used to add the corresponding constraints. 
+After a valid solution was found the inputgraph is plottet via matplotlib.plt. The members of the dominating set are displayed red while all the other vertices are displayed green. 
+The console output shows information about the solving process and the solution. Such as the current upper bound and lower bound. 
\ No newline at end of file
diff --git a/Latex/introduction.tex b/Latex/introduction.tex
index 31f368e975ca4ebd242a6f1979804f4a3fb21909..b21a6f2800394e75972896f3e8fb8159b7daea41 100644
--- a/Latex/introduction.tex
+++ b/Latex/introduction.tex
@@ -1,3 +1,20 @@
 \section{Introduction}\raggedbottom 
+Plants try to optimize their architecture to fulfil different objectives. One of it is to maximize the photosynthetic output. Another one is to minimize the cost to build the vascular system \citep{bio_netw}. To maximize the photosynthetic output plants optimize different parameters. As increasing one parameter can reduce another one, many parameters can not be optimized at the same time \citep{bio_netw} \citep{bio_nutrient}.
+In this thesis we focus on one particular mechanism how plants can optimize their photosynthetic output. 
 
+
+To generate photosynthetical gains plants need sunlight, carbondioxid and water. (Photosynthese zitat. )
+Water and nutrients are supplied via the vascular system. Xylem transports water to the leaves where the mesophyl cells produce sugars. These sugars are carried out to the whole plant by phloem, a tissue specialized on transporting sugars. 
+Xylem and phloem cells are not able to generate sugars, but they are mandatory to supply water to the mesophyl cells and to transport sugars. To be satisfied with the amount of water mesophyl cells have access to, they must not be more than 2-3 cells away from a xylem cell. In this range water can flow from the xylem cells through mesophyl cells that are not next to a xylem cell via diffusion. At the same time sugars can be transported away from the mesophyl cells and supplied to the phloem if there is a phloem cell in the range of 2-3 cells. (Zitat finden. )  
+
+
+To produce as much sugar as possible the plant can try to(driven by evolutionary processes) maximize the number of mesophyl cells by minimizing the number of vein cells. In this thesis we describe a method to reproduce an optimal venation pattern that minimizes the number of vein cells with respect to the constraint that all mesophyl cells need to be in a fixed range to vein cells. Leaf veins have a hierarchy. In general there is at least one thick major vein branch and several narrow minor branches. This hierarchy is completely disregarded in our problem formulation. Environmental circumstances also influence the venation pattern \citep{bio_veinh}. These influences on the venation are also completely disregarded in our model. 
+ The input instance is given by an undirected graph $G = (V,E)$ that represents a leaf. The set of vertices $V$ represents the leaf cells while the set of edges $E$ represents the connections between the leaf cells in the form of plasmodesmata. To find an optimal pattern we use a special variant of the dominating set problem. For this problem we present an ILP-formulation and an implementation in a branch and cut framenwork. 
+
+The dominating set problem and several variants are NP-hard \citep{ilp_np}. For our specific case we demand connectivity between the members of the set. This connectivity in ILP-formulations is subject of different prublications as it is not trivial. 
+\citet{myky} presented in her bachelors thesis an alternative to ILPs. She implemented an algorithm for our problem using Answer Set Programming (ASP). For larger input instances the ASP-version did not create optimal solutions in a reasonable amount of time. \citet{myky} compared for the case where the dominating set does not need to be connected the runtime from an ILP-Version to the runtime from her ASP-version. Her tests revealed that for this particular problem the ILP-version performed significantly better.
+
+Goal of this thesis is to formulate an ILP and to evaluate wether if this performs better on our input graphs. We compared the ASP-version with an ILP-formulation that was created in this thesis. Contrary to the presumption that the ILP-version could generate solutions faster, on our input instances the ASP-version was significantly faster.
+However the ILP-version outperformed the ASP-version on random graphs. The different characteristics and the runtime for the graphs can be taken from the results section. In the discussion section we discuss which characteristics are responsible for the differences in the runtime and what effect initiates them.  
+In Section 2, the Preleminaries, we will give a short introduction in ILP. Additionally important defintions are stated. After that in the following Section 3 we define the methods to find an optimal venation pattern. Section 4 demonstrates the implementation. At last in Section 4 and Section 5 we present the results and followed by a discussion on the effectiveness and limitations of the ILP-solution and which characteristics graphs hold to perform either better with the ILP-version or with the ASP-version.  
 \pagebreak
diff --git a/Latex/methods.tex b/Latex/methods.tex
index 8ff16c82d4e351b87b91cc243669c75f49f7e3da..2fa157557fd0486d84383d29c1fa3780c5e54655 100644
--- a/Latex/methods.tex
+++ b/Latex/methods.tex
@@ -1,14 +1,14 @@
 \section{Methods} \raggedbottom
-We represent a leaf as a undirected graph $G = (V,E)$. Each vertex $v$ represents a leaf cell whereas a root $v_{root}$ is predefined. Leaf cells are connected to its neighbors cells via plasmodesmata. Those connections are represented by the edges $E$. We then look for a minimum set of nodes such that still the whole leaf can be supplied with water and the nutrients can be evacuated. For this purpose these vein cells need to be connected and the root cell needs to be part of the solution. (Vielleicht an dieser Stelle schon auf DS referenzieren)\\
+We represent a plant's leaf as an undirected graph $G = (V,E)$. Each vertex $v$ represents a leaf cell whereas a root $v_{root}$ is predefined. Leaf cells are connected to its neighboring cells via plasmodesmata. Plasmodesmata are microscopic channels that link plant cells, enabling transport of nutrients and water amongst of other things . Those connections are represented by the edges $E$. We then look for a minimum set of nodes such that the whole leaf can still be supplied with water and the nutrients can be collected. For this purpose these vein cells need as well as the root need to be connected. Those cells form our solution for a rooted connected $k$-hop dominating set $D$\\
 (Irgendwie unterbringen, dass die non-vein-Zellen nicht direkt mit den vein-Zellen benachbart sein müssen.)
 \\
-We use an node based ILP-Formulation to solve this special variant of the dominating set. We start by introducing a formulation for the general $k$-hop dominating set. As the objective function for our special variant remains the same, we then stepwise add constraints until we can present an ILP-formulation for the rooted connected $k$-hop dominating set.\\
-As our implementation is node based we ommit decision variables for edges, and instead only assign a variable $x_v \in \{0,1\}$ for every $v \in V$, whereas $x_v = 1 \Leftrightarrow v \in DS$.
+We use a node based ILP-Formulation to solve this special variant of the dominating set. We start by introducing a formulation for the general $k$-hop dominating set. As the objective function for our special variant remains the same, we then add constraints in a stepwise manner until we can present an ILP-formulation for the rooted connected $k$-hop dominating set.\\
+As our implementation is node based we omit decision variables for edges, and instead only assign a variable $x_v \in \{0,1\}$ for every $v \in V$, with the interpretation $x_v = 1 \Leftrightarrow v \in DS$.
 \subsection{Minimum Dominating Set}
 As we try to minimize the number of vertices in the dominating set our ILP is given as:\\
 \textit{objective target}: 
 \begin{equation} \label{obj}
-min\{\sum_{v \in V}{x_v}\}
+\min \lbrace \sum_{v \in V}{x_v} \rbrace
 \end{equation}
 \textit{subject to:}
 \begin{equation} \label{base}
@@ -24,15 +24,23 @@ The objective target for this problem is the same as \eqref{obj}. But the family
 This family of inequalities serves to model the requirement that each vertex or at least one member of the k-neighborhood has to be included in the dominating set. For the case $k = 1$ this family is the same as \eqref{base}.
 
 \subsection{Connectivity}
-To enforce connectivity(using ILP)there are different approaches. As this is not trivial there have been many publications \citep{bomersbach}, \citep{fischetti_steiner_t}, \citep{fault_tolerant}, \citep{forrest}, \citep{on_imposing_con}, \citep{mtz} concerning this issue in the past years. 
+To enforce connectivity (using ILP) there are different approaches. As this is not trivial there have been many publications \citep{bomersbach}, \citep{fischetti_steiner_t}, \citep{fault_tolerant}, \citep{forrest}, \citep{on_imposing_con}, \citep{mtz} concerning this issue in the past years. 
 \subsubsection{Vertex separators}
-On approach is to use so called vertex separators. In \citep{bomersbach} and \citep{fischetti_steiner_t} the authors used this approach to create ILP based algorithms to solve other graph theoretical optimization problems which require the solution to be connected. \citep{bomersbach} presented an ILP-formulation to solve the connected maximum coverage problem and \citep{fischetti_steiner_t} proposed ILP-formulations for different variants of the steiner tree problem.
+One approach is to use so called vertex separators. In \citep{bomersbach} and \citep{fischetti_steiner_t} the authors used this approach to create ILP based algorithms to solve other graph theoretical optimization problems which require the solution to be connected. \citet{bomersbach} presented an ILP-formulation to solve the connected maximum coverage problem and \citet{fischetti_steiner_t} proposed ILP-formulations for different variants of the steiner tree problem.
 (that was solved in a branch and cut framework?). 
 As \citep{bomersbach} refers to \citep{fischetti_steiner_t} in terms of the connectivity constraints, both ILP-formulations use the same constraints to enforce connectivity. 
-The tests of \citep{bomersbach} compared the runtime of this implementation to previous proposed exact algorithms and to greedy approaches for the connected maximum coverage problem. In all test cases this implementation was significantly faster than all other exact algorithms. While in some cases the greedy algorithm was slightly faster, the proposed algorithm was more accurate. 
+In \citep{bomersbach}, the authors compared the runtime of this implementation to previous proposed exact algorithms and to greedy approaches for the connected maximum coverage problem. In all test cases this implementation was significantly faster than all other exact algorithms. While in some cases the greedy algorithm was slightly faster, the proposed algorithm was more accurate. 
 The algorithm from \citep{fischetti_steiner_t} significantly improved the runtime of an exact solver for all the different steiner tree problem variants and their proposed implementation won most of the different categories of the 11th DIMACS challenge on steiner trees. 
 \\
-Let $v,w \in V$. A $v$-$w$-separator is a subset $S_{v,w} \subset V$ such that $G[V-S_{v,w}]$ has no path between $v$ and $w$. A minimal $v$-$w$-separator $S_{{v,w}_{min}}$ is a $v$-$w$-separator where no vertex can be removed. If any vertex $y$ is removed $S_{{v,w}_{min}} \setminus \{y\}$ it no longer separates $v$ and $w$. Let $S(v,w)$ (Use different notation. This is misleading) denote the family of all minimal $v$-$w$-separators. \\
+
+\begin{figure}
+	\centering
+	\includegraphics[width=10cm]{bilder/vertex_separator_illustration.eps}
+	\caption{Illustration of vertex separators. In all three pictures the set of green nodes separates the blue and the red node. In the middle and on the right picture minimal separators are illustrated. If one of the green nodes is turned into a black node, the green set would not separate the blue and the red node anymore. }
+	\label{mtz}
+\end{figure}
+
+Let $v,w \in V$. A $v$-$w$-separator is a subset $S_{v,w} \subset V$ such that $G[V-S_{v,w}]$ has no path between $v$ and $w$. A minimal $v$-$w$-separator $S_{{v,w}_{min}}$ is a $v$-$w$-separator where no vertex can be removed. That is, $S_{{v,w}_{min}} \setminus \{y\}$ is not a separator for $v$ and $w$. Let $S(v,w)$ (Use different notation. This is misleading) denote the family of all minimal $v$-$w$-separators. \\
 In \citep{bomersbach} and \cite{fischetti_steiner_t} the following family of inequalities  is used to enforce connectivity: 
 
 
@@ -47,10 +55,10 @@ x_v + x_w \leq \sum_{u \in S_{v,w}}{x_u} + 1, \forall v, w \in V, v \neq w, \for
 \end{equation}
 for minimum vertex separators that include the root node.
 
-The number of all minimum vertex seperator constraints is potentially exponential \citep{bomersbach}. Therefore in \citep{bomersbach}, \citep{fischetti_steiner_t} and \citep{forest} they treated these constraints as lazy constraints, which means in particular that none of those constraints are included in the initial model. Instead iteratively integer solutions are resolved \citep{bomersbach}, \citep{fischetti_steiner_t}. If such a solution is not connected, in \citep{bomersbach} and \citep{fischetti_steiner_t} minimal vertex separators that separate single components are identified via a linear time algorithm, while in \citep{forrest} a classical max-flow min-cut theorem is used to identify violated constraints.\\
+The number of all minimum vertex seperator constraints is potentially exponential \citep{bomersbach}. Therefore in \citep{bomersbach}, \citep{fischetti_steiner_t} and \citep{forrest} they treated these constraints as lazy constraints, which means in particular that none of those constraints are included in the initial model. Instead iteratively integer solutions are resolved \citep{bomersbach}, \citep{fischetti_steiner_t}. If such a solution is not connected, in \citep{bomersbach} and \citep{fischetti_steiner_t} minimal vertex separators that separate single components are identified via a linear time algorithm, while in \citep{forrest} a classical max-flow min-cut theorem is used to identify violated constraints.\\
 Our algorithm to identify and add violated constraints is analogous the one from \citep{bomersbach} with the exception that we only search for violated constraints that include the root node. 
 
-\begin{algorithm}[H]
+\begin{algorithm}[H] \label{alg:addConst}
 \SetAlgoLined
 	$DS^* := \{v | x_v = 1\}$ \\
 	$G' := G[DS]$\\
@@ -60,7 +68,7 @@ Our algorithm to identify and add violated constraints is analogous the one from
 		\For{all components $c$ in $C \setminus \{c_{root}\}$} {
 			$v := $ any node from $c$\\
 			$s_1 := $ findMinVertexSeparator($G$, $DS^*$, $v \in c$, $v_{root}$, $c_{root}$)\\
-			$s_2 :=$ findMinVertexSeparator($G$, $DS^*$, $v_{root}$, $v \in c$))\\
+			$s_2 :=$ findMinVertexSeparator($G$, $DS^*$, $v_{root}$, $v \in c$, $c$))\\
 			\For{all $w_1 \in c$} {
 				add the following constraint to the model: $\sum_{s \in s_1}{x_s} \geq x_{w_1} + x_{v_{root}} - 1$\\
 			}
@@ -82,7 +90,7 @@ This algorithm is executed each time an integer solution is resolved (using a br
 \caption{findMinVertexSeparator($G$, $DS^*$, $v \in c_v$, $w$, $c_v$)}
 \end{algorithm}
 
-The algorithm above detects a minimal vertex separator that seperates the node $w$ and the connected component $c_v$. It is taken from \citep{bomersbach} although Bomersbach et al. took it initially from \citep{fischetti_steiner_t}. With this method the minimal vertex separator is found that is closest to the component $c_v$. In picture \ref{pic:min_sep} one can see an illustration of the process. Suppose the red marked nodes are an unconnected solution $D^*$. The set of blue marked nodes is the minimal separator that is closest to the connected component on the upper graph while the set of green marked nodes is the minimal separator that is closest to the component containing the root. On the picture in the middle and the right you can see the step \ref{remEdges} of the algorithm \ref{alg:minSep}. As one can see, after removing all edges between the components and its neighborhood the blue marked nodes on the middle picture and the green marked nodes on the right picture are still reachable from the other component. Therefore the algorithm returns this selection of nodes as minimal vertex separator. 
+The algorithm above detects a minimal vertex separator that seperates the node $w$ and the connected component $c_v$. It is taken from \citep{bomersbach} although \citet{bomersbach} took it initially from \citep{fischetti_steiner_t}. With this method the minimal vertex separator is found that is closest to the component $c_v$. In picture \ref{pic:min_sep} one can see an illustration of the process. Suppose the red marked nodes are an unconnected solution $D^*$. The set of blue marked nodes is the minimal separator that is closest to the connected component on the upper graph while the set of green marked nodes is the minimal separator that is closest to the component containing the root. On the picture in the middle and the right you can see the step \ref{remEdges} of the algorithm \ref{alg:minSep}. As one can see, after removing all edges between the components and its neighborhood the blue marked nodes on the middle picture and the green marked nodes on the right picture are still reachable from the other component. Therefore the algorithm returns this selection of nodes as minimal vertex separator. 
 
 \begin{figure}
 	\centering
@@ -196,5 +204,5 @@ As this constraint did not reduced the runtime wie tried to refine it. There are
 This circumstane lead to the following constraint, that makes use of the gausian summ formula. The idea is still to limit the distance between the root node $v_{root}$ and all the members of $D$. In this advanced formulation we limit the sum of the distances to $\sum_{i_1}^|D*|{i}$. This constraint cuts of unconnected solutions that are valid using only the previous constraint \eqref{rpl}. But as our tests revealed this constraint did not generate a performance boost but even epanded the runtime(As it probably adds too much complexity to the model).  
 
 (Maybe also mention that this constraint in isolation allows solutions which are forbidden using the previous one)
-\subsubsection{preventively adding separators} 
-We use the lazy approach to prevent that too many constraints are added that are not mandatory to generate suffiecient solutions. In despite of this we evaluated if adding a certain amount/ some particular separator constraints could reduce the runtime. It could have been that are more appropriate LP bound is generated using this approach and unnecessary iterations could have been prevented. 
+\subsubsection{Preventively adding separators} 
+We use the lazy approach to prevent that too many constraints are added that are not mandatory to generate sufficient solutions. In despite of this we evaluated if adding particular separator constraints could reduce the runtime. It can be that a more appropriate LP bound is generated using this approach and unnecessary iterations can be prevented. 
diff --git a/Latex/preliminaries.tex b/Latex/preliminaries.tex
index 62e9d7a4408c7e85778726d83431f7a2a7daaab5..0e3f7b0c7f8a11e8fffc40c5e5b6278783e8479b 100644
--- a/Latex/preliminaries.tex
+++ b/Latex/preliminaries.tex
@@ -3,32 +3,31 @@
 Linear programming is a technique to minimize linear functions. 
 The following definition is based on the book \citep{fischetti2019introduction}\\
 
-A linear programm (LP) problem consists of an objective function that is minimized with respect to a set of linear inequalities. \\
+A linear programm (LP) problem consists of an linear objective function that is minimized with respect to a set of linear inequalities. \\
 \\
 Linear programms can be expressed as 
-\[min\{c^Tx : Ax \geq b, x \geq 0\}\]
-where $b \in \mathbb{R}^n$ and $c \in \mathbb{R}^n$ are constant vectors.  The matrix $A \in \mathbb{R}^{m \times n}$ contains the coefficients of the $m$ inequalities. The objective function $c^Tx \in R$ is to be  minimized. The vector inequality $Ax \geq b$ has to be valid for a solution.
-The vector $x \in \mathbb{R}^n$ describes possible solutions. If $x \in \mathbb{R}^n$ obeys all inequalities it is called a feasible solution. A solution $x^*$ is optimal if it respects all inequalities and is minimal. 
+\[\min\{c^Tx : Ax \geq b, x \geq 0\}\]
+where $b \in \mathbb{R}^m$ and $c \in \mathbb{R}^n$ are constant vectors.  The matrix $A \in \mathbb{R}^{m \times n}$ contains the coefficients of the $m$ inequalities. We minimize the objective function $c^Tx \in \mathbb{R}$. The vector inequality $Ax \geq b$ has to be satisfied for a valid solution.
+The vector $x \in \mathbb{R}^n$ describes possible solutions. If $x \in \mathbb{R}^n$ satisfies all inequalities it is called a feasible solution. A solution $x^*$ is optimal if it respects all inequalities and is minimal. 
 \\
 \\
 Integer linear programms (ILPs) are linear programms with the additional restriction that all variables have to be integers: $x \in \mathbb{Z}^n$. 
-The decision variant of an ILP is NP-complete.\citep{ilp_np}
+The decision variant of an ILP is NP-complete \citep{ilp_np}.
 \\
-Each line $j$ of $Ax \geq b$ can be expressed as the sum $\sum_{i=1}^{n}{a_ix_i} \geq b_j$. The objective function can be expressed as $\sum_{i=1}^n{c_ix_i}$. In this thesis we use this notation as we perceive it as more readable. 
 \\
+Each line $j$ of $Ax \geq b$ can be expressed as the sum $\sum_{i=1}^{n}{a_{ij}x_i} \geq b_j$. The objective function can be expressed as $\sum_{i=1}^n{c_ix_i}$. In this thesis we use this notation as we perceive it as more readable. 
 Combinatorical optimisation problems can be modelled with ILPs. Every variable $x_i \in \{0,1\}$ denotes a possible decision to include item $i \in \{1,...,n\}$ in the solution.
 \subsection{Definitions}
 \begin{definition}[Neighborhood]
-Given an undirected Graph $G = (V,E)$. Let $N(v)$ denote the neighborhood of a vertex $v$. $N(v)$ can formally be described as follows: \[w \in N(v) \Leftrightarrow \exists (v,w) \in E\]
+Given an undirected graph $G = (V,E)$. Let $N(v)$ denote the neighborhood of a vertex $v$. $N(v)$ can formally be described as follows: \[w \in N(v) \Leftrightarrow \exists (v,w) \in E\]
 \end{definition}
-(Maybe leaf base case out as the s.t. part is different from k-hop version. So after introducing in the implementation part it would be replaced.)
 \begin{definition}[Dominating Set]
-Given an undirected Graph $G = (V,E)$ a Dominating Set is a subset $DS \subset V$ such that each vertex $v \in V$ is either included in the Dominating Set or adjacent to at least one vertex which is included in the Dominating Set. So a for a Dominating Set $DS$ the following statement is valid
-\[\forall v \in V \setminus DS: \exists u \in DS, u \in N(v)\]
+Given an undirected Graph $G = (V,E)$ a dominating set is a subset $D \subset V$ such that each vertex $v \in V$ is either included in the dominating set or adjacent to at least one vertex which is included in the dominating set. For a dominating set $D$ the following statement is valid
+\[\forall v \in V \setminus D: \exists u \in D, u \in N(v)\]
 \end{definition}
 
 \begin{definition}[k-Neighborhood]
-The neighborhood of a single vertex $N(v)$ is defined above. Let the neighborhood of a set of vertices $W \subset V$ be defined as follows: 
+The neighborhood of a single vertex $N(v)$ is defined above. Let the neighborhood of a set of vertices $W \subset V$ be defined as 
 \[N(W) := \bigcup_{u \in W} N(u)\]
 Let $k \in \mathbb{N}$. 
 With help of this definition the k-neighborhood $N_k(v)$ of a single vertex $v \in V$ can recursively be defined as: 
@@ -37,17 +36,20 @@ whereas $N_1(v) = N(v)$. So $N_k(v)$ is a set of all vertices which can be reach
 \end{definition}
 
 \begin{definition}[k-hop Dominating Set]
-A $k$-hop Dominating Set is a subset $DS \subset V$ such that for each vertex $v \in V \setminus DS$ there exists a path of length $l \leq k$ between $v$ and at least one vertex $d \in DS$. So $DS$ is a $k$-hop dominating set if it fulfills the following requirement: 
-\[\forall v \in V \setminus DS: \exists u \in DS, u \in N_k(v)\]
+A $k$-hop dominating set is a subset $D \subset V$ such that for each vertex $v \in V \setminus D$ there exists a path of length $l \leq k$ between $v$ and at least one vertex $d \in D$. Thus $D$ is a $k$-hop dominating set if it satisfies the following requirement: 
+\[\forall v \in V \setminus D: \exists u \in D, u \in N_k(v)\]
+This means that each vertex is either part of $D$ or in $N_k(w)$ for any $w \in D$.
 \end{definition}
 
 \begin{definition}[connected k-hop Dominating Set]
-A $k$-hop Dominating Set $DS$ is a connected $k$-hop Dominating Set if the induced subgraph $G[DS]$ is connected.
+A $k$-hop dominating set $D$ is a connected $k$-hop Dominating Set if the induced subgraph $G[D]$ is connected.
 \end{definition}
 
 \begin{definition}[rooted connected k-hop Dominating Set]
-Let $v_{root} \in V$ be a predefined vertex.  
-A rooted connected $k$-hop Dominating Set DS is as connected $k$-hop Dominating Set which also includes $v_{root}$.
+Let $v \in V$ be the \emph{root}. 
+A rooted connected $k$-hop dominating set $D$ is as connected $k$-hop dominating set which also includes $v$.
 \end{definition}
 
+
+(Add a definition for what "connected" means)
 \pagebreak
diff --git a/Latex/references.bib b/Latex/references.bib
index 8c7ab55e58ea1ab5f5a2d63088b603fd08675fad..ea32410727849bbc94100c0b80342180703a8db6 100644
--- a/Latex/references.bib
+++ b/Latex/references.bib
@@ -148,3 +148,48 @@ pages = {27–36},
 numpages = {10},
 keywords = {subtour elimination constraints, vehicle routing problem, facets, lifting, traveling salesman problem}
 }
+@article{bio_netw,
+author = {Conn, Adam and Pedmale, Ullas and Chory, Joanne and Navlakha, Saket},
+year = {2017},
+month = {07},
+pages = {53-62.e3},
+title = {High-Resolution Laser Scanning Reveals Plant Architectures that Reflect Universal Network Design Principles},
+volume = {5},
+journal = {Cell Systems},
+doi = {10.1016/j.cels.2017.06.017}
+}
+@article{bio_nutrient,
+author = {Posada, Juan and Sievänen, Risto and Messier, Christian and Perttunen, Jari and Nikinmaa, Eero and Lechowicz, Martin},
+year = {2012},
+month = {06},
+pages = {731-41},
+title = {Contributions of leaf photosynthetic capacity, leaf angle and self-shading to the maximization of net photosynthesis in Acer saccharum: a modelling assessment},
+volume = {110},
+journal = {Annals of botany},
+doi = {10.1093/aob/mcs106}
+}
+@article{bio_veinh,
+author = {Sack, Lawren and Scoffoni, Christine},
+year = {2013},
+month = {04},
+pages = {},
+title = {Leaf venation: Structure, function, development, evolution, ecology and applications in the past, present and future},
+volume = {198},
+journal = {The New phytologist},
+doi = {10.1111/nph.12253}
+}
+@bachelorsthesis{myky,
+	author={Hyunh, My Ky},
+	title={Solving Dominating Set Using Answer Set Programming},
+	school={Heinrich Heine University Düsseldorf},
+	year={2020},
+	month={February}
+}
+@misc{klau,
+    title={Solving the Maximum-Weight Connected Subgraph Problem to Optimality},
+    author={Mohammed El-Kebir and Gunnar W. Klau},
+    year={2014},
+    eprint={1409.5308},
+    archivePrefix={arXiv},
+    primaryClass={cs.DS}
+}
diff --git a/Latex/results.tex b/Latex/results.tex
index bc90f75c5dfb1a721b09f6efbd0bd0c8925052c0..426b8167c1d56a18942e651fef62dd28d74bbc01 100644
--- a/Latex/results.tex
+++ b/Latex/results.tex
@@ -1,18 +1,611 @@
-\documentclass[a4paper,10pt]{amsart}
-
-\usepackage{amsfonts}
-\usepackage{amsmath}
-\usepackage{amssymb}
-\usepackage{gensymb}
-\usepackage{graphicx}
-\usepackage{colortbl}
-
-\usepackage[utf8] {inputenc}
-\title{Blatt x}
-\author{Mario Surlemont, 2493398\\
-Gruppe x}
-\date{}
-\begin{document}
-\maketitle
-
-\end{document}
\ No newline at end of file
+\section{Results}\raggedbottom 
+(Ganz wichtig noch zu erwähnen, dass wir immer nur eine! optimale Lösung gesucht haben, da ILP das auch so macht!)
+
+
+This section shows our results of the runtime for the Minimum Connected rooted k-hop Dominating Set problem. We test the graphs that represent plant leafs from \citep{myky} as well as randomly generated graphs and grid graphs. At first we briefly describe the graphs from \citep{myky} and our other testgraphs. A more detailled description of the leaf graphs can be taken from \citep{myky}. All tests have been performed using a notebook with an Intel Core i7-4720HQ CPU @ 2.60GHz x 8 and 8 GB of RAM under Ubuntu 18.04.14 LTS.
+
+As leaf graphs we use the instances \textit{small-leaf}, \textit{middle-leaf}, \textit{bigger-leaf}, \textit{maple} and \textit{asymmetric}. The instances \textit{small-leaf}, \textit{middle-leaf} and \textit{bigger-leaf} are similar in their structure. Each of the three graphs has the root at the bottom side and a symmetrical composition. They only differ in the number of nodes. The smallest graph \textit{small-leaf} has only 15 nodes while \textit{middle-leaf} has 62 nodes and \textit{bigger-leaf} has 71 nodes. While  \textit{maple} represents a maple's leaf having 118 nodes, \textit{asymmetric} is inspired by an alocasia leaf. The peculiarity here is that it has the root in the middle of the leaf. It has 378 nodes. 
+
+The following figure illustrates the 5 different leaf graphs. 
+\begin{figure}[H]
+	\centering
+	\includegraphics[width=11cm]{bilder/graphs_illustration.eps}
+	\caption[The leaf graphs]{The graphs that represent plant leafs}
+	\label{fig:graphs}
+\end{figure}
+
+First of all we introduce a table demonstrating different characteristics of the leaf graphs. The first two columns show the size of the graph, i.e., the number of nodes and edges. The density is shown in the third column. It is a measure that indicates the relative amount of the number of edges a graph has to the theoretical number a graph can have. 
+Additionally the maximal, the average and the minimal node degree is shown. These parameters imply if a graph has at least one node with a much higher degree than the average or if the degrees are equally distributed.
+
+\begin{table}[H]
+	\begin{tabular}{l cccP{1.2cm}P{1.2cm}P{1.2cm}P{1.2cm}}
+		name & |V| & |E| & densitiy & max. degree & avg degree & median degree & min degree \\
+		\hline
+		small-leaf & 15 & 30 & 0.29 & 6 & 4 & 4 & 1 \\
+		middle-leaf & 62 & 152 & 0.08 & 6 & 5 & 6 & 1\\
+		bigger-leaf & 71 & 182 & 0.07 & 6 & 5 & 6 & 1\\
+		maple & 118 & 308 & 0.04 & 7 & 5 & 6 & 1\\
+		asymmetric & 378 & 1071 & 0.02 & 8 & 6 & 6 & 3\\
+	\end{tabular}
+	\caption[The characteristics of the leaf graphs]{The characteristics of the leaf graphs}
+\end{table}
+
+We then continue with the runtime of our ILP-implementation using the leaf graphs as input. 
+The following tables present the runtime in seconds as well as the number of constraints that were lazily added in the solution process. The last column shows the size of an optimal solution, i.e., the number of nodes that form a minumum dominating set. 
+For the case that the solution process took more than 1000 seconds we state the upper bound and the lower bound that were determined within this time. The upper bound specifies the smallest solution that was found until the time was over. This means that an optimal solution will not be larger than the upper bound. In constrast the lower bound gives the smallest theoretical possible size of an optimal solution to that time. Let $U$ be an upper bound and $L$ be an lower bound. In the colum \textit{optimal} we used the denotion $[U,L]$. 
+
+\begin{table}[H]
+	\begin{tabular}{l cccccccccc}
+		name & k & \# lazily added constraints & runtime(s) & optimal \\
+		\hline
+		small-leaf 	& 1 & 9 & 0.01237 & 6  \\
+		 			& 2 & 4 & 0.007257 & 3\\
+					& 3 & 0 & 0.007005 & 2\\
+		middle-leaf & 1 & 4945 & 1099.324462 & [22,21]\\
+					& 2 & 2043 & 7.006414 & 14\\
+					& 3 & 811 & 0.950746 & 10\\
+		bigger-leaf & 1 & 6726 & 1058.414758 & [25, 22] \\
+					& 2 & 377 & 18.178422 & 15 \\
+					& 3 & 1266 & 2.606486 & 11\\
+		maple 		& 1 & 194321 & 1129.807776 & [41,31] \\
+					& 2 & 9621 & 1074.40126 & [26,20] \\
+					& 3 & 8029 & 1532.499756 & [20,17]\\
+		asymmetric 	& 1 & 34255 & 1010.642396 & [219, 80] \\
+					& 2 & 2706 & 1065.584708 & [161,38] \\
+					& 3 & 13947 & 1026.665897 & [63, 22]\\
+	\end{tabular}
+	\caption[Minimum Connected rooted $k$-hop Dominating Set Results on the leaf graphs]{Minimum Connected rooted $k$-hop Dominating Set Results on the leaf graphs}
+\end{table}
+
+With increasing parameter $k$ the runtime decreases significantly. Additionaly this table indicates a relation between the number of constraints that are added lazily and the runtime. Besides some outliers it seems like a high number of lazily added constraints implies a higher runtime. The more constraints that are added the more frequent unconnected integer solutions are found in the solution process. This effect occurs espacially on input instances that have many symmetrical solutions which are unconnected. If the input graph only has nodes that have a degree close to the average degree, then more likely this instance has many different symmetrical solutions. In such instances there is no node that is so valuable that it has to be included in the solution. If an unconnected integer solution is generated violated constraints are added to the model. After adding these constraints it most likely is cheaper to swap the nodes and use nodes where no violated constraints have been added yet than to use the same nodes and add those nodes, that the added constraints demand. On graphs where some nodes exist that have a significant higher degree than the average adding constraints more likely will not exclude them from a solution as they cover to many other vertices. This effect is roughly indicated by the number of lazily added constraints. If only a few constraints were added then there probably will not have been many options to swap valuable nodes without creating to many costs. 
+
+With increasing size, i.e., number of nodes a graph has, the density of our graphs decreases. The density of the graph is another indicator that roughly implies the runtime \citep{fault_tolerant}. Especially on graphs with unequal distribution of node degrees. As with increasing size the density decreases on our graphs, the tests can not clearly indicate if the size is purely  responsible for the runtime or if the density also has an influence. In the following we will test random generated graphs that have different size and for each size 10 different levels of density. On this graphs the densitiy clearly is the determing factor for the runtime. 
+
+The next table shows the characteristics of the random graphs. 
+\begin{table}[H]
+	\begin{tabular}{l cccP{1.2cm}P{1.2cm}P{1.2cm}P{1.2cm}}
+		name & |V| & |E| & densitiy & max. degree & avg. degree & median degree & min degree\\
+		\hline
+		GNM\_ 50\_ 122 & 50 & 122 & 0.1 & 9 & 5 & 5 & 1 \\
+		GNM\_ 50\_ 245 & 50 & 245 & 0.2 & 15 & 10 & 9.5 & 6\\
+		GNM\_ 50\_ 368 & 50 & 368 & 0.3 & 22 & 15 & 15 & 7\\
+		GNM\_ 50\_ 490 & 50 & 490 & 0.4 & 28 & 20 & 19 & 13\\
+		GNM\_ 50\_ 612 & 50 & 612 & 0.5 & 35 & 24 & 24 & 17\\
+		GNM\_ 50\_ 735 & 50 & 735 & 0.6 & 36 & 29 & 30 & 17\\
+		GNM\_ 50\_ 858 & 50 & 858 & 0.7 & 41 & 34 & 34.5 & 28\\
+		GNM\_ 50\_ 980 & 50 & 980 & 0.8 & 44 & 39 & 39 & 34\\
+		GNM\_ 50\_ 1102 & 50 & 1102 & 0.9 & 49 & 44 & 44 & 38\\
+		GNM\_ 50\_ 1225 & 50 & 1225 & 1.0 & 49 & 49 & 49 & 49\\
+		GNM\_ 100\_ 495 & 100 & 495 & 0.1 & 17 & 10 & 10 & 1\\
+		GNM\_ 100\_ 990 & 100 & 990 & 0.2 & 29 & 20 & 19.5 & 8\\
+		GNM\_ 100\_ 1485 & 100 & 1485 & 0.3 & 40 & 30 & 29 & 21\\
+		GNM\_ 100\_ 1980 & 100 & 1980 &  0.4 & 51 & 40 & 40 & 26\\
+		GNM\_ 100\_ 2475 & 100 & 2475 & 0.5 & 62 & 50 & 50 & 35\\ 
+		GNM\_ 100\_ 2970 & 100 & 2970 & 0.6 & 70 & 59 & 60 & 48\\ 
+		GNM\_ 100\_ 3465 & 100 & 3465 &  0.7 & 80 & 69 & 69 & 56\\
+		GNM\_ 100\_ 3960 & 100 & 3960 & 0.8 & 88 & 79 & 80 & 70\\ 
+		GNM\_ 100\_ 4455 & 100 & 4455 & 0.9 & 95 & 89 & 89 & 83\\
+		GNM\_ 100\_ 4950 & 100 & 4950 & 1.0 & 99 & 99 & 99 & 9\\
+		GNM\_ 250\_ 3112 & 250 & 3112 & 0.1 & 38 & 25 & 24.5 & 14\\
+		GNM\_ 250\_ 6225 & 250 & 6225 & 0.2 & 67 & 50 & 49.5 & 28\\
+		GNM\_ 250\_ 9338 & 250 & 9338 & 0.3 & 91 & 75 & 75 & 51\\
+		GNM\_ 250\_ 12450 & 250 & 12450 & 0.4 & 119 & 100 & 100 & 82\\
+		GNM\_ 250\_ 15562 & 250 & 15562 & 0.5 & 144 & 124 & 124 & 109\\
+		GNM\_ 250\_ 18675 & 250 & 18675 & 0.6 & 173 & 149 & 150 & 131\\
+		GNM\_ 250\_ 21788 & 250 & 21788 &  0.7 & 195 & 174 & 174 & 156\\
+		GNM\_ 250\_ 24900 & 250 & 24900 & 0.8 & 216 & 199 & 199 & 180\\
+		GNM\_ 250\_ 28012 & 250 & 28012 & 0.9 & 236 & 224 & 224 & 210\\
+		GNM\_ 250\_ 31125 & 250 & 31125 & 1.0 & 249 & 249 & 249 & 249\\
+		GNM\_ 500\_ 12475 & 500 & 12475 & 0.1 & 68 & 50 & 50 & 30\\
+		GNM\_ 500\_ 24950 & 500 & 24950 & 0.2 & 128 & 100 & 100 & 68\\
+		GNM\_ 500\_ 37425 & 500 & 37425 & 0.3 & 183 & 150 & 150 & 118\\
+		GNM\_ 500\_ 49900 & 500 & 49900 &  0.4 & 243 & 200 & 200 & 166\\
+		GNM\_ 500\_ 62375 & 500 & 62375 & 0.5 & 286 & 250 & 250 & 207\\
+		GNM\_ 500\_ 74850 & 500 & 74850 & 0.6 & 328 & 299 & 299 & 266\\ 
+		GNM\_ 500\_ 87325 & 500 & 87325 &  0.7 & 380 & 349 & 350 & 318\\
+		GNM\_ 500\_ 99800 & 500 & 99800 & 0.8 & 427 & 399 & 399 & 372\\  
+		GNM\_ 500\_ 112275 & 500 & 112275 & 0.9 & 467 & 449 & 450 & 427\\ 
+		GNM\_ 500\_ 124750 & 500 & 124750 & 1.0 & 499 & 499 & 499 & 499\\
+	\end{tabular}
+	\caption[The characteristics of the random graphs]{The characteristics of the random graphs}
+\end{table}
+
+We have random graphs of four levels of size(|V| = 50; 100; 250; 500). For each of these levels we have ten levels of density(0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0) to explore particulary its influence on the runtime.
+The results clearly show that, despite the larger size of the random graphs, the runtime is significantly shorter than on the leaf graphs. The density here seems to be a reasonable parameter that implies the runtime. On dense graphs few nodes are mandatory to form a dominating set. This allows to find an optimal solution faster. 
+
+\begin{table}[H]
+	\begin{tabular}{l ccccccccccccc}
+		name & k & \# lazily added constraints & runtime(s) & optimal\\
+		\hline
+		GNM\_ 50\_ 122 & 1 & 66 & 0.034878 & 11\\
+		GNM\_ 50\_ 245 & 1 &  9 & 0.07 & 7\\
+		GNM\_ 50\_ 368 & 1 &  0 & 0.013882 & 5 \\
+		GNM\_ 50\_ 490 & 1 &  4 & 0.016478 & 4\\
+		GNM\_ 50\_ 612 & 1 &  0 & 0.017783 & 4\\
+		GNM\_ 50\_ 735 & 1 &  3 & 0.018471 & 3\\
+		GNM\_ 50\_ 858 & 1 &  3 & 0.038161 & 3\\
+		GNM\_ 50\_ 980 & 1 &  3 & 0.023549 & 3\\
+		GNM\_ 50\_ 1102 & 1 &  3 & 0.019566 & 3\\
+		GNM\_ 50\_ 1225 & 1 &  0 & 0.002396 & 1\\
+		GNM\_ 100\_ 495 & 1 &  113 & 0.376731 & 14\\
+		GNM\_ 100\_ 990 & 1 &  17 & 0.488522 & 8\\
+		GNM\_ 100\_ 1485 & 1 &  7 & 0.396982 & 6\\
+		GNM\_ 100\_ 1980 & 1 &  0 & 0.315584 & 5\\
+		GNM\_ 100\_ 2475 & 1 &  0 & 0.045136 & 4\\ 
+		GNM\_ 100\_ 2970 & 1 &  0 & 0.013737 & 3\\ 
+		GNM\_ 100\_ 3465 & 1 &  0 & 0.010702 & 3\\
+		GNM\_ 100\_ 3960 & 1 &  0 & 0.007955 & 2\\ 
+		GNM\_ 100\_ 4455 & 1 &  0 & 0.00505 & 2\\
+		GNM\_ 100\_ 4950 & 1 &  0 & 0.00535 & 1\\
+		GNM\_ 250\_ 3112 & 1 &  0 & 1017.303471 & [17;15]\\
+		GNM\_ 250\_ 6225 & 1 &  0 & 900.64 & 10 \\
+		GNM\_ 250\_ 9338 & 1 &  0 & 29.67 & 7\\
+		GNM\_ 250\_ 12450 & 1 &  0 & 46.78 & 6\\
+		GNM\_ 250\_ 15562 & 1 &  0 & 12.29 & 5\\
+		GNM\_ 250\_ 18675 & 1 &  0 & 0.97 & 4\\
+		GNM\_ 250\_ 21788 & 1 &  3 & 0.415836 & 3\\
+		GNM\_ 250\_ 24900 & 1 &  0 & 0.040482 & 3\\
+		GNM\_ 250\_ 28012 & 1 &  0 & 0.024473 & 2\\
+		GNM\_ 250\_ 31125 & 1 &  0 & 0.017227 & 1\\
+		GNM\_ 500\_ 12475 & 1 &  42 & 1004.920676 & [21;13]\\
+		GNM\_ 500\_ 24950 & 1 &  0 & 1051.277153 & [12;8]\\
+		GNM\_ 500\_ 37425 & 1 &  0 & 9.89 & 4\\
+		GNM\_ 500\_ 49900 & 1 &  0 & 1017.23594 & [6;5]\\
+		GNM\_ 500\_ 62375 & 1 &  0 & 178.495614 & 5\\
+		GNM\_ 500\_ 74850 & 1 &  0 & 9.753998 & 4\\ 
+		GNM\_ 500\_ 87325 & 1 &  0 & 21.368156 & 4\\
+		GNM\_ 500\_ 99800 & 1 &  0 & 0.286309 & 3\\  
+		GNM\_ 500\_ 112275 & 1 &  0 & 0.189313 & 2\\ 
+		GNM\_ 500\_ 124750 & 1 &  0 & 0.11 & 1\\
+	\end{tabular}
+	\caption[Minimum Connected rooted $1$-hop Dominating Set Results on the random graphs]{Minimum Connected rooted $1$-hop Dominating Set Results on the random graphs}
+\end{table}
+
+\begin{table}[H]
+	\begin{tabular}{l cccccccccccc}
+		name & k & \# lazily added constraints & optimal & runtime(s)\\
+		\hline
+		GNM\_ 50\_ 122 & 2 & 67 & 11 & 0.03795\\
+		GNM\_ 50\_ 245 & 2 & 9 & 7 & 0.066219\\
+		GNM\_ 50\_ 368 & 2 & 0 & 1 & 0.008017\\
+		GNM\_ 50\_ 490 & 2 & 0 & 1 & 0.002605\\
+		GNM\_ 50\_ 612 & 2 & 0 & 1 & 0.002223\\
+		GNM\_ 50\_ 735 & 2 & 0 & 1 & 0.002411\\
+		GNM\_ 50\_ 858 & 2 & 0 & 1 & 0.002486\\
+		GNM\_ 50\_ 980 & 2 & 0 & 1 & 0.002173\\
+		GNM\_ 50\_ 1102 & 2 & 0 & 1 & 0.012025\\
+		GNM\_ 50\_ 1225 & 2 & 0 & 1 & 0.001756\\
+		GNM\_ 100\_ 495 & 2 & 6 & 4 & 0.108993\\
+		GNM\_ 100\_ 990 & 2 & 12 & 2 & 0.060489\\
+		GNM\_ 100\_ 1485 & 2 & 0 & 1 & 0.022559\\
+		GNM\_ 100\_ 1980 & 2 & 0 & 1 & 0.004219\\
+		GNM\_ 100\_ 2475 & 2 & 0 & 1 & 0.004791\\
+		GNM\_ 100\_ 2970 & 2 & 0 & 1 & 0.044863\\
+		GNM\_ 100\_ 3465 & 2 & 0 & 1 & 0.004259\\
+		GNM\_ 100\_ 3960 & 2 & 0 & 1 & 0.004273\\
+		GNM\_ 100\_ 4455 & 2 & 0 & 1 & 0.003927\\
+		GNM\_ 100\_ 4950 & 2 & 0 & 1 & 0.003468\\
+		GNM\_ 250\_ 3112 & 2 & 0 & 2 & 0.270981\\
+		GNM\_ 250\_ 6225 & 2 & 28 & 1 & 0.101028\\
+		GNM\_ 250\_ 9338 & 2 & 0 & 1 & 0.17136\\
+		GNM\_ 250\_ 12450 & 2 & 0 & 1 & 0.031756\\
+		GNM\_ 250\_ 15562 & 2 & 109 & 1 & 0.257635\\
+		GNM\_ 250\_ 18675 & 2 & 0 & 1 & 0.035879\\
+		GNM\_ 250\_ 21788 & 2 & 0 & 1 & 0.030358\\
+		GNM\_ 250\_ 24900 & 2 & 0 & 1 & 0.024402\\
+		GNM\_ 250\_ 28012 & 2 & 0 & 1 & 0.018999\\
+		GNM\_ 250\_ 31125 & 2 & 0 & 1 & 0.016561\\
+		GNM\_ 500\_ 12475 & 2 & 0 & 2 & 1.123904\\
+		GNM\_ 500\_ 24950 & 2 & 0 & 1 & 0.663096\\
+		GNM\_ 500\_ 37425 & 2 & 0 & 1 & 0.228299\\
+		GNM\_ 500\_ 49900 & 2 & 0 & 1 & 0.272308\\
+		GNM\_ 500\_ 62375 & 2 & 0 & 1 & 0.29011\\
+		GNM\_ 500\_ 74850 & 2 & 0 & 1 & 0.249534\\
+		GNM\_ 500\_ 87325 & 2 & 0 & 1 & 0.250321\\
+		GNM\_ 500\_ 99800 & 2 & 0 & 1 & 0.170296\\
+		GNM\_ 500\_ 112275 & 2 & 0 & 1 & 0.148031\\
+		GNM\_ 500\_ 124750 & 2 & 0 & 1 & 0.119448\\
+	\end{tabular}
+	\caption[Minimum Connected rooted $2$-hop Dominating Set Results on the random graphs]{Minimum Connected rooted $2$-hop Dominating Set Results on the random graphs}
+\end{table}
+
+\begin{table}[H]
+	\begin{tabular}{l cccccccccccc}
+		name & k & \# lazily added constraints & optimal & runtime(s)\\
+		\hline
+		GNM\_ 50\_ 122 & 3 & 0 & 2 & 0.01651\\
+		GNM\_ 50\_ 245 & 3 & 0 & 1 & 0.005787\\
+		GNM\_ 50\_ 368 & 3 & 0 & 1 & 0.007788\\
+		GNM\_ 50\_ 490 & 3 & 0 & 1 & 0.002089\\
+		GNM\_ 50\_ 612 & 3 & 0 & 1 & 0.002541\\
+		GNM\_ 50\_ 735 & 3 & 0 & 1 & 0.00202\\
+		GNM\_ 50\_ 858 & 3 & 0 & 1 & 0.001855\\
+		GNM\_ 50\_ 980 & 3 & 0 & 1 & 0.00213\\
+		GNM\_ 50\_ 1102 & 3 & 0 & 1 & 0.012196\\
+		GNM\_ 50\_ 1225 & 3 & 0 & 1 & 0.001661\\
+		GNM\_ 100\_ 495 & 3 & 0 & 1 & 0.026969\\
+		GNM\_ 100\_ 990 & 3 & 0 & 1 & 0.022669\\
+		GNM\_ 100\_ 1485 & 3 & 0 & 1 & 0.022822\\
+		GNM\_ 100\_ 1980 & 3 & 0 & 1 & 0.004204\\
+		GNM\_ 100\_ 2475 & 3 & 0 & 1 & 0.006448\\
+		GNM\_ 100\_ 2970 & 3 & 0 & 1 & 0.044946\\
+		GNM\_ 100\_ 3465 & 3 & 0 & 1 & 0.004356\\
+		GNM\_ 100\_ 3960 & 3 & 0 & 1 & 0.004163\\
+		GNM\_ 100\_ 4455 & 3 & 0 & 1 & 0.004094\\
+		GNM\_ 100\_ 4950 & 3 & 0 & 1 & 0.003533\\
+		GNM\_ 250\_ 3112 & 3 & 14 & 1 & 0.141794\\
+		GNM\_ 250\_ 6225 & 3 & 28 & 1 & 0.106819\\
+		GNM\_ 250\_ 9338 & 3 & 51 & 1 & 0.205765\\
+		GNM\_ 250\_ 12450 & 3 & 82 & 1 & 0.03714\\
+		GNM\_ 250\_ 15562 & 3 & 109 & 1 & 0.267159\\
+		GNM\_ 250\_ 18675 & 3 & 0 & 1 & 0.036207\\
+		GNM\_ 250\_ 21788 & 3 & 0 & 1 & 0.042911\\
+		GNM\_ 250\_ 24900 & 3 & 0 & 1 & 0.038669\\ 
+		GNM\_ 250\_ 28012 & 3 & 0 & 1 & 0.023179\\
+		GNM\_ 250\_ 31125 & 3 & 0 & 1 & 0.020695\\
+		GNM\_ 500\_ 12475 & 3 & 0 & 1 & 0.634489\\
+		GNM\_ 500\_ 24950 & 3 & 68 & 1 & 0.947696\\
+		GNM\_ 500\_ 37425 & 3 & 118 & 1 & 0.288719\\
+		GNM\_ 500\_ 49900 & 3 & 0 & 1 & 0.405276\\
+		GNM\_ 500\_ 62375 & 3 & 0 & 1 & 0.544754\\
+		GNM\_ 500\_ 74850 & 3 & 0 & 1 & 0.265611\\
+		GNM\_ 500\_ 87325 & 3 & 0 & 1 & 0.270045\\
+		GNM\_ 500\_ 99800 & 3 & 0 & 1 & 0.404701\\
+		GNM\_ 500\_ 112275 & 3 & 0 & 1 & 0.205316\\
+		GNM\_ 500\_ 124750 & 3 & 0 & 1 & 0.225787\\
+	\end{tabular}
+	\caption[Minimum Connected rooted $3$-hop Dominating Set Results on the random graphs]{Minimum Connected rooted $3$-hop Dominating Set Results on the random graphs}
+\end{table}
+
+We also tested another class of graphs on their runtime. The structure of our leaf graphs is similar in the manner that all have a fixed neighborhood of 6 vertices, all are planar and almost all nodes have the same degree. Many grid graphs also have all these characteristics. This is why we tested our implementation also on grid graphs. Here we tested graphs that are quadratic as well as graphs that are more oblong. Especially on qudratic graphs the same behavior like on the leaf graphs has occured. Here also comparatively many constraints were added lazily. Which indicates that here also many unconnected integer solutions were created. It seems like the ``gridness'' of a graph a the crucial factor that pushs the runtime over a reasonable extent. The gridness can be defined as the combination of the three described properties from the beginning. On grid graphs the ASP-version also performs much better than the ILP-Version.
+
+Here also a short overview about the characteristics of the grid graphs. 
+\begin{table}[H]
+	\begin{tabular}{l ccccccccccccc}
+		name & |V| & |E| & densitiy & max. degree & avg degree & median degree & min degree\\
+		\hline
+		GRID\_ 6\_ 4 & 24 & 38 & 0.14 & 4 & 3 & 3 & 2\\
+		GRID\_ 8\_ 8 & 64 & 112 & 0.06 & 4 & 4 & 4 & 2\\
+		GRID\_ 16\_ 4 & 64 & 108 & 0.05 & 4 & 3 & 3 & 2\\
+		GRID\_ 18\_ 2 & 36 & 52 & 0.08 & 3 & 3 & 3 & 2\\
+		GRID\_ 32\_ 2 & 64 & 94 & 0.05 & 3 & 3 & 3 & 2\\
+	\end{tabular}
+	\caption[The characteristics of the grid graphs]{The characteristics of the grid graphs}
+\end{table}
+
+\begin{table}[H]
+	\begin{tabular}{l ccccccccccccc}
+		name & k & \# lazily added constraints & runtime(s) & optimal\\
+		\hline
+		GRID\_ 6\_ 4 & 1 & 178 & 0.054271 & 11\\
+		GRID\_ 6\_ 4 & 2 & 74 & 0.044738 & 7\\
+		GRID\_ 6\_ 4 & 3 & 112 & 0.05603 & 6\\
+		GRID\_ 8\_ 8 & 1 & 6451 & 774.59 & 26\\
+		GRID\_ 8\_ 8 & 2 & 865 & 81.970768 & 18\\
+		GRID\_ 8\_ 8 & 3 & 3634 & 15.546363 & 15\\
+		GRID\_ 16\_ 4 & 1 & 31 & 42.568463 & 28 \\
+		GRID\_ 16\_ 4 & 2 & 2353 & 1.405127 & 17 \\
+		GRID\_ 16\_ 4 & 3 & 2789 & 7.9726 & 16\\
+		GRID\_ 18\_ 2 & 1 & 383 & 0.116538 & 18 \\
+		GRID\_ 18\_ 2 & 2 & 394 & 0.147668 & 17 \\
+		GRID\_ 18\_ 2 & 3 & 319 & 0.17269 & 16\\
+		GRID\_ 32\_ 2 & 1 & 1090 & 0.261853 & 32 \\
+		GRID\_ 32\_ 2 & 2 & 791 & 0.341931 & 31 \\
+		GRID\_ 32\_ 2 & 3 & 876 & 0.286863 & 30\\
+	\end{tabular}
+	\caption[Minimum Connected rooted $k$-hop Dominating Set Results on the grid graphs]{Minimum Connected rooted $k$-hop Dominating Set Results on the grid graphs}
+\end{table}
+
+Another important factor that comes with a long runtime for the ILP-version is when there is a large gap between the number of an unconnected solution and the number of a connected solution for an instance. 
+The other way round the ILP-version performed good on graphs were the gap was tight such that only a few nodes needed to be added to an unconnected solution. 
+
+In the method section (refer at this place) we introduced the MTZ constraints (also refer) to induce connectivity. 
+The next table shows the runtime of three graphs using the MTZ constraints. 
+
+\begin{table}[H]
+	\begin{tabular}{l ccccccccccccc}
+		name & k & runtime(s) & optimal\\
+		\hline
+		GRID\_ 8\_ 8 & 2 & 61.264993 & 18\\
+		middle-leaf & 2 & 1229.65 & [14;13] \\
+		bigger-leaf & 3 & 197.451639 & 11 \\
+	\end{tabular}
+	\caption[Minimum Connected rooted $k$-hop Dominating Set Results using the MTZ constraints]{Minimum Connected rooted $k$-hop Dominating Set Results using the MTZ constraints}
+\end{table}
+
+The version using the vertex sepearator is in all testes cases many times faster. The version using the MTZ constraints seems not to be a reasonable alternative. 
+
+Now we study the case when some of the vertex separator constraints are preadded to the model. We preadded for all combinations $c_v$ of a vertex $v$ and its neighborhood $N(v) $the vertex separators that seperate $c_v$ and the root vertex $v_r$. As the following table reveals this generates a significant speedup to the runtime. However the bigger leaf instance can still not be solved optimal under 1000 seconds. In all test cases the ILP-version with preadeed separators performed better than the ASP-version. Still many separator constraints needed to be added lazily. If these constraints can be identified in advance this could generate another speedup. 
+At this point preadding the described separators itself does not improve the ILP-implementation in a manner that the runtime is satisfying. 
+
+\begin{table}[H]
+	\begin{tabular}{l ccccccccccccc}
+		name & k & \# lazily added constraints & runtime(s) & optimal\\
+		\hline
+		small-leaf & 1 & 0 & 0.003599 & 6  \\s
+		middle-leaf & 1 & 3699 & 710.18652 & 22\\
+		bigger-leaf & 1 & 7105 & 1080.973378 & [25, 23]\\
+		GRID\_ 8\_ 8 & 1 & 1061 & 40.536663 & 26\\
+		GRID\_ 16\_ 4 & 1 & 57 & 27.854317 & 28 \\
+	\end{tabular}
+	\caption[Minimum Connected rooted $k$-hop Dominating Set Results with preadded vertex separator constraints]{Minimum Connected rooted $k$-hop Dominating Set Results with preadded vertex separator constraints}
+\end{table}
+ 
+
+At last we present tables that show the effect of the additional constraints (referenz) introduced in the method section(ref) on some graphs.
+
+The first table shows the effect of the \textit{intermediate node constraint}(ref) from \citep{fischetti_steiner_t}. To recap this constraint demands that every vertex that is part of the dominating set needs at least two neighbors which are also members of the dominating set. Roughly speaking every node of the dominating set(except for the root) needs to be an intermediate node. This constraint reduces the runtime drasticly. Howewer in most cases including this constraint adds nodes to the solution that would not be included without. For example the instances \textit{middle-leaf} and \textit{bigger-leaf} have one extra node in the optimal solution when this constraint is included. 
+
+\begin{table}[H]
+	\begin{tabular}{l ccccccccccccc}
+		name & k & \# lazily added constraints & runtime(s) & optimal\\
+		\hline
+		small-leaf & 1 & 8 & 0.011553 & 6  \\
+		middle-leaf & 1 & 643 & 0.723175 & 23\\
+		bigger-leaf & 1 & 1157 & 1.396552 & 25 \\
+		maple & 1 & 1405 & 439.99668 & 41\\
+		asymmetric & 1 & 4294 & 1006.370245 & [256, 62] \\
+	\end{tabular}
+	\caption[Minimum Connected rooted $k$-hop Dominating Set Results with IMN constraint]{Minimum Connected rooted $k$-hop Dominating Set Results with IMN constraint}
+\end{table}
+
+The next table shows the results using the naive constraint to reduce the path length from the root to members of the dominating set. It does not reduce the runtime but even increases it. For the cases were we stopped the solution process after a fixed time span the upper bounds and lower bounds are worse than without this constraint. However in some cases this constraint reduces the number of lazily added constraints which is an indicator that the room of possible unconnected solutions was reduced. But this effect did not reduce the runtime. Probably this constraint added complexity to the model which increased the runtime instead. 
+
+\begin{table}[H]
+	\begin{tabular}{l ccccccccccccc}
+		name & k & \# lazily added constraints & runtime(s) & optimal\\
+		\hline
+		small-leaf & 2 & 9 & 0.008948 & 3  \\
+		middle-leaf & 2 & 109 & 10.936048 & 14\\
+		bigger-leaf & 2 & 67 & 23.457956 & 15 \\
+		maple & 118 & 2 & 5804 & 1011.766479 & [26,20] \\
+		asymmetric & 2 & 17391 & 1114.582689 & [190,81] \\
+	\end{tabular}
+	\caption[Minimum Connected rooted $k$-hop Dominating Set Results with SPL constraint]{Minimum Connected rooted $k$-hop Dominating Set Results with SPL constraint}
+\end{table}
+
+
+The additional constraint that uses the gaussian sumformula even performed drastically worse. The runtime increased significantly as this constraints adds a high degree of complexity to the model. 
+
+\begin{table}[H]
+	\begin{tabular}{l ccccccccccccc}
+		name & k & \# lazily added constraints & runtime(s) & optimal\\
+		\hline
+		small-leaf & 2 & 8 & 0.009487 & 3  \\
+		middle-leaf & 2 & 457 & 87.4349 & 14\\
+		bigger-leaf & 2 & 1566 & 317.235052 & 15 \\
+	\end{tabular}
+	\caption[Minimum Connected rooted $k$-hop Dominating Set Results with GAUS constraint]{Minimum Connected rooted $k$-hop Dominating Set Results with GAUS constraint}
+\end{table}
+
+When using both constraints in conjunction the constraint with the gaussian sumformula dominates the runtime. 
+
+\begin{table}[H]
+	\begin{tabular}{l ccccccccccccc}
+		name & k & \# lazily added constraints & runtime(s) & optimal\\
+		\hline
+		small-leaf & 2 & 0 & 0.004869 & 3  \\
+		middle-leaf & 2 & 1198 & 87.231026 & 14\\
+		bigger-leaf & 2 & 882 & 317.309151 & 15 \\
+	\end{tabular}
+	\caption[Minimum Connected rooted $k$-hop Dominating Set Results with SPL and GAUS constraint]{Minimum Connected rooted $k$-hop Dominating Set Results with SPL and GAUS constraint}
+\end{table}
+
+As we compared our ILP-version to the ASP-version from \citep{myky} the following tables list the runtime of the different graphs using the ASP-version. 
+
+We start with our leaf graphs. This table clearly shows that the ASP-version performs much better on these graphs. As for example for the \textit{middle-leaf} instance with parameter $k=1$ the ASP-version finds a solution in 154 seconds, after 1100 seconds the ILP-version does not find a solution(ref). 
+
+\begin{table}[H]
+	\begin{tabular}{l ccccccc}
+		name & k & \# lazily added constraints & runtime(s) & optimal\\
+		\hline
+		small-leaf & 1 & 9 & 0.008 & 6\\
+		small-leaf & 2 & 1 & 4 & 0.009 & 3\\
+		small-leaf & 3 & 0 & 0.009 & 2\\
+		middle-leaf & 1 & 4945 & 153.605 & 22\\
+		middle-leaf & 2 & 2043 & 0.597 & 14\\
+		middle-leaf & 3 & 811 & 0.038 & 10\\
+		bigger-leaf & 1 & 6726 & 1002.022 & [25, 24]\\
+		bigger-leaf & 2 & 377 & 1.735 & 15 \\
+		bigger-leaf & 3 & 1266 & 0.069 & 11\\
+		maple & 1 & 194321 & 1129.807776 & [41,31]\\
+		maple & 2 & 118 & 9621 & 1008.548 & [26,24]\\
+		maple & 3 & 8029 & 1006.839 & [21,20]\\
+		asymmetric & 1 & 34255 & 1011.016 & [164, 29]\\
+		asymmetric & 2 & 2706 & 1009.839 & [102,20]\\
+		asymmetric & 3 & 34255 & 1012.392 & [69, 18]\\
+	\end{tabular}
+	\caption[Minimum Connected rooted $k$-hop Dominating Set Results on the leaf graphs using ASP]{Minimum Connected rooted $k$-hop Dominating Set Results on the leaf graphs using ASP}
+\end{table}
+
+
+We continue with the runtime of the ASP-version on random graphs. This tables clearly indicate that the ILP-version performs better on random graphs. 
+
+\begin{table}[H]
+	\begin{tabular}{l ccccccccccccc}
+		name & k & runtime(s) & optimal\\
+		\hline
+		GNM\_ 50\_ 122 & 1 & 0.014 & 11\\
+		GNM\_ 50\_ 245 & 1 & 0.033 & 7\\
+		GNM\_ 50\_ 368 & 1 & 0.031 & 5 \\
+		GNM\_ 50\_ 490 & 1 & 0.050 & 4\\
+		GNM\_ 50\_ 612 & 1 & 0.055 & 4\\
+		GNM\_ 50\_ 735 & 1 & 0.044 & 3\\
+		GNM\_ 50\_ 858 & 1 & 0.050 & 3\\
+		GNM\_ 50\_ 980 & 1 & 0.059 & 2\\
+		GNM\_ 50\_ 1102 & 1 & 0.052 & 3\\
+		GNM\_ 50\_ 1225 & 1 & 0.055 & 1\\
+		GNM\_ 100\_ 495 & 1 & 32.451 & 14\\ 
+		GNM\_ 100\_ 990 & 1 & 278.296 & 8\\ 
+		GNM\_ 100\_ 1485 & 1 & 42.545 & 6\\  
+		GNM\_ 100\_ 1980 & 1 & 4.049 & 6\\
+		GNM\_ 100\_ 2475 & 1 & 0.655 & 4\\ 
+		GNM\_ 100\_ 2970 & 1 & 0.226 & 3\\ 
+		GNM\_ 100\_ 3465 & 1 & 0.208 & 3\\ 
+		GNM\_ 100\_ 3960 & 1 & 0.234 & 2\\ 
+		GNM\_ 100\_ 4455 & 1 & 0.253 & 2 \\
+		GNM\_ 100\_ 4950 & 1 & 0.246 & 1\\ 
+		GNM\_ 250\_ 3112 & 1 & 1017.204 & [23;9]\\ 
+		GNM\_ 250\_ 6225 & 1 & 1009.124 & [12;6] \\
+		GNM\_ 250\_ 9338 & 1 & 1009.402 & [8;5]\\
+		GNM\_ 250\_ 12450 & 1 & 1013.976 & [6;4]\\
+		GNM\_ 250\_ 15562 & 1 & 1008.099 & [5;4]\\
+		GNM\_ 250\_ 18675 & 1 & 25.687 & 4\\
+		GNM\_ 250\_ 21788 & 1 & 1.749 & 3\\
+		GNM\_ 250\_ 24900 & 1 & 1.830 & 3\\ 
+		GNM\_ 250\_ 28012 & 1 & 3.400 & 2\\
+		GNM\_ 250\_ 31125 & 1 & 1.651 & 1\\ 
+		GNM\_ 500\_ 12475 & 1 & 1016.396 & [29;7]\\
+		GNM\_ 500\_ 24950 & 1 & 1011.967 & [15;4]\\
+		GNM\_ 500\_ 37425 & 1 & 1010.582 & [10;4]\\ 
+		GNM\_ 500\_ 49900 & 1 & 1007.821 & [7;4]\\
+		GNM\_ 500\_ 62375 & 1 & 1006.141 & [6;4]\\
+		GNM\_ 500\_ 74850 & 1 & 597.053 & 4\\
+		GNM\_ 500\_ 87325 & 1 & 621.053 & 4\\
+		GNM\_ 500\_ 99800 & 1 & 13.348 & 3\\
+		GNM\_ 500\_ 112275 & 1 & 8.705 & 2\\
+		GNM\_ 500\_ 124750 & 1 & 8.058 & 1\\
+	\end{tabular}
+	\caption[Minimum Connected rooted $1$-hop Dominating Set Results on the random graphs using ASP]{Minimum Connected rooted $1$-hop Dominating Set Results on the random graphs using ASP}
+\end{table}
+
+\begin{table}[H]
+	\begin{tabular}{l cccccccccccc}
+		name & k & optimal & runtime(s)\\
+		\hline
+		GNM\_ 50\_ 122 & 2 & 5 & 0.025\\
+		GNM\_ 50\_ 245 & 2 & 1 & 0.030\\ 
+		GNM\_ 50\_ 368 & 2 & 1 & 0.036\\
+		GNM\_ 50\_ 490 & 2 & 1 & 0.036\\
+		GNM\_ 50\_ 612 & 2 & 1 & 0.038\\
+		GNM\_ 50\_ 735 & 2 & 1 & 0.046\\
+		GNM\_ 50\_ 858 & 2 & 1 & 0.047\\
+		GNM\_ 50\_ 980 & 2 & 1 & 0.049\\
+		GNM\_ 50\_ 1102 & 2 & 1 & 0.052\\
+		GNM\_ 50\_ 1225 & 2 & 1 & 0.048\\
+		GNM\_ 100\_ 495 & 2 & 4 & 0.084\\
+		GNM\_ 100\_ 990 & 2 & 2 & 0.098\\
+		GNM\_ 100\_ 1485 & 2 & 1 & 0.111\\
+		GNM\_ 100\_ 1980 & 2 & 1 & 0.143\\
+		GNM\_ 100\_ 2475 & 2 & 1 & 0.151\\
+		GNM\_ 100\_ 2970 & 2 & 1 & 0.174\\
+		GNM\_ 100\_ 3465 & 2 & 1 & 0.188\\
+		GNM\_ 100\_ 3960 & 2 & 1 & 0.206\\
+		GNM\_ 100\_ 4455 & 2 & 1 & 0.220\\
+		GNM\_ 100\_ 4950 & 2 & 1 & 0.213\\
+		GNM\_ 250\_ 3112 & 2 & 2 & 0.521\\
+		GNM\_ 250\_ 6225 & 2 & 1 & 0.652\\
+		GNM\_ 250\_ 9338 & 2 & 1 & 0.737\\
+		GNM\_ 250\_ 12450 & 2 & 1 & 0.867\\
+		GNM\_ 250\_ 15562 & 2 & 1 & 0.972\\
+		GNM\_ 250\_ 18675 & 2 & 1 & 1.141\\
+		GNM\_ 250\_ 21788 & 2 & 1 & 1.221\\
+		GNM\_ 250\_ 24900 & 2 & 1 & 1.305\\
+		GNM\_ 250\_ 28012 & 2 & 1 & 1.453\\
+		GNM\_ 250\_ 31125 & 2 & 1 & 1.519\\
+		GNM\_ 500\_ 12475 & 2 & 2 & 2.314\\
+		GNM\_ 500\_ 24950 & 2 & 1 & 2.770\\
+		GNM\_ 500\_ 37425 & 2 & 1 & 3.236\\
+		GNM\_ 500\_ 49900 & 2 & 1 & 3.702\\
+		GNM\_ 500\_ 62375 & 2 & 1 & 4.218\\
+		GNM\_ 500\_ 74850 & 2 & 1 & 4.799\\
+		GNM\_ 500\_ 87325 & 2 & 1 & 5.456\\
+		GNM\_ 500\_ 99800 & 2 & 1 & 6.199\\
+		GNM\_ 500\_ 112275 & 2 & 1 & 6.268\\
+		GNM\_ 500\_ 124750 & 2 & 1 & 6.522\\
+	\end{tabular}
+	\caption[Minimum Connected rooted $2$-hop Dominating Set Results on the random graphs using ASP]{Minimum Connected rooted $2$-hop Dominating Set Results on the random graphs using ASP}
+\end{table}
+
+\begin{table}[H]
+	\begin{tabular}{l cccccccccccc}
+		name & k & optimal & runtime(s)\\
+		\hline
+		GNM\_ 50\_ 122 & 3 & 2 & 0.022\\
+		GNM\_ 50\_ 245 & 3 & 1 & 0.029\\
+		GNM\_ 50\_ 368 & 3 & 1 & 0.032\\
+		GNM\_ 50\_ 490 & 3 & 1 & 0.039\\
+		GNM\_ 50\_ 612 & 3 & 1 & 0.041\\
+		GNM\_ 50\_ 735 & 3 & 1 & 0.040\\
+		GNM\_ 50\_ 858 & 3 & 1 & 0.041\\
+		GNM\_ 50\_ 980 & 3 & 1 & 0.048\\
+		GNM\_ 50\_ 1102 & 3 & 1 & 0.051\\
+		GNM\_ 50\_ 1225 & 3 & 1 & 0.053\\
+		GNM\_ 100\_ 495 & 3 & 1 & 0.082\\
+		GNM\_ 100\_ 990 & 3 & 1 & 0.101s\\
+		GNM\_ 100\_ 1485 & 3 & 1 & 0.119\\
+		GNM\_ 100\_ 1980 & 3 & 1 & 0.140\\
+		GNM\_ 100\_ 2475 & 3 & 1 & 0.163\\
+		GNM\_ 100\_ 2970 & 3 & 1 & 0.172\\
+		GNM\_ 100\_ 3465 & 3 & 1 & 0.186\\
+		GNM\_ 100\_ 3960 & 3 & 1 & 0.214\\
+		GNM\_ 100\_ 4455 & 3 & 1 & 0.227\\
+		GNM\_ 100\_ 4950 & 3 & 1 & 0.223\\
+		GNM\_ 250\_ 3112 & 3 & 1 & 0.529\\
+		GNM\_ 250\_ 6225 & 3 & 1 & 0.657\\
+		GNM\_ 250\_ 9338 & 3 & 1 & 0.782\\
+		GNM\_ 250\_ 12450 & 3 & 1 & 0.885\\
+		GNM\_ 250\_ 15562 & 3 & 1 & 0.967\\
+		GNM\_ 250\_ 18675 & 3 & 1 & 1.114\\
+		GNM\_ 250\_ 21788 & 3 & 1 & 1.263\\
+		GNM\_ 250\_ 24900 & 3 & 1 & 1.323\\
+		GNM\_ 250\_ 28012 & 3 & 1 & 1.489\\
+		GNM\_ 250\_ 31125 & 3 & 1 & 1.510\\
+		GNM\_ 500\_ 12475 & 3 & 1 & 2.297\\
+		GNM\_ 500\_ 24950 & 3 & 1 & 2.714\\
+		GNM\_ 500\_ 37425 & 3 & 1 & 3.250\\
+		GNM\_ 500\_ 49900 & 3 & 1 & 3.719\\
+		GNM\_ 500\_ 62375 & 3 & 1 & 4.513\\
+		GNM\_ 500\_ 74850 & 3 & 1 & 4.786\\
+		GNM\_ 500\_ 87325 & 3 & 1 & 5.305\\
+		GNM\_ 500\_ 99800 & 3 & 1 & 5.845\\
+		GNM\_ 500\_ 112275 & 3 & 1 & 6.490\\
+		GNM\_ 500\_ 124750 & 3 & 1 & 6.802\\
+	\end{tabular}
+	\caption[Minimum Connected rooted $3$-hop Dominating Set Results on the random graphs using ASP]{Minimum Connected rooted $3$-hop Dominating Set Results on the random graphs using ASP}
+\end{table}
+
+On the other hand the ASP-version performs better on the grid graphs. This is as we expected. 
+
+\begin{table}[H]
+	\begin{tabular}{l ccccccccccccc}
+		name & k & runtime(s) & optimal\\
+		\hline
+		GRID\_ 6\_ 4 & 1 & 0.009 & 11  \\
+		GRID\_ 6\_ 4 & 2 & 0.011 & 7\\
+		GRID\_ 6\_ 4 & 3 & 0.013 & 6\\
+		GRID\_ 8\_ 8 & 1 & 92.739 & 26\\
+		GRID\_ 8\_ 8 & 2 & 1.534 & 18\\
+		GRID\_ 8\_ 8 & 3 & 1.747 & 15\\		
+		GRID\_ 16\_ 4 & 1 & 0.281 & 28 \\
+		GRID\_ 16\_ 4 & 2 & 0.014 & 17\\
+		GRID\_ 16\_ 4 & 3 & 0.023 & 16\\
+		GRID\_ 18\_ 2 & 1 & 0.010 & 18 \\
+		GRID\_ 18\_ 2 & 2 & 0.011 & 17 \\
+		GRID\_ 18\_ 2 & 3 & 0.013 & 16\\		
+		GRID\_ 32\_ 2 & 1 & 0.015 & 32\\
+		GRID\_ 32\_ 2 & 2 & 0.015 & 31 \\
+		GRID\_ 32\_ 2 & 3 & 0.023 & 30\\
+	\end{tabular}
+	\caption[Minimum Connected rooted $k$-hop Dominating Set Results on the grid graphs using ASP]{Minimum Connected rooted $k$-hop Dominating Set Results on the grid graphs using ASP}
+\end{table}
+
+At very last we want to have a deeper look into one particular aspect. During the solution process upper and lower bounds are determined. Most of the time the ILP-version is capable of finding a solid upper bound quickly. The vast majority of the time needed to find an optimal solution is spent on closing the gap to the lower bound. To illustrate this the next table shows after what time an upper bound that is 20\%, 10\%, 5\% and 0\% different from an optimal solution is found. 
+In the cases were the ASP-version performs better it also founds a proper upper bound faster. In the one case where the ILP-version performs better it finds an appriopriate upper bound faster. 
+
+\begin{table}[H]
+	\begin{tabular}{l ccccccP{1cm}P{1cm}cc}
+		name & type & k & 20\% & 10\% & 5\% & 0\% & time to close the gap & \# lazily added constraints & runtime(s) & optimal\\
+		\hline
+		middle-leaf & ILP & 1 & 0s & 0s & 0s & 0s & 1099s & 4945 & 1099.324462 & [22,21]\\
+		middle-leaf & ASP & 1 & 0s & 0s & 0s & 0s & 154s & - & 153.605 & 22\\
+		bigger-leaf & ILP & 1 & 1s & 4s & 4s & 14s & 1044s & 6726 & 1058.414758 & [25, 22]\\
+		bigger-leaf & ASP & 1 & 0s & 2s & 5s & 5s & 997s & - & 1002.022 & [25, 24]\\
+		GNM\_ 250\_ 6225 & ILP & 1 & 0s & 0s & 6s & 6s & 894s & 0 & 900.64 & 10\\
+		GNM\_ 250\_ 6225 & ASP & 1 & 238s & - & - & - & - & - & - & 10\\
+		GRID\_ 8\_ 8 & ILP & 1 & 0s & 2s & 5s & 599s & 175s & 6451 & 774.59 & 26\\
+		GRID\_ 8\_ 8 & ASP & 1 & 0s & 0s & 0s & 11s & 81s & - & 92.739 & 26\\
+	\end{tabular}
+	\caption[Time that is necessary to find appropriate upper bounds]{Time that is necessary to find appropriate upper bounds}
+\end{table}
+\pagebreak
diff --git a/Latex/titelmakros.tex b/Latex/titelmakros.tex
index 604504c0238e98537fbdb92b3eabb276c61d507e..7038abef0df618a4cd7915e13cf34ea6c72dc043 100644
--- a/Latex/titelmakros.tex
+++ b/Latex/titelmakros.tex
@@ -47,6 +47,12 @@
 \usepackage[colorlinks,citecolor=blue,linkcolor=black]{hyperref}
  %anklickbares Inhaltsverzeichnis
 
+
+\usepackage{array}
+\newcolumntype{P}[1]{>{\centering\arraybackslash}p{#1}}
+
+\usepackage{float}
+\usepackage{listings}
 \usepackage{amsmath}
 \usepackage{amssymb}
 \usepackage[ruled,vlined,linesnumbered]{algorithm2e}
@@ -58,7 +64,7 @@
 
 \ifthenelse{\boolean{\biber}}{
 	% only needed for biber
-	\usepackage[style=authoryear,natbib=true,backend=biber,mincitenames=1,maxcitenames=2,maxbibnames=99,uniquelist=false,dashed=false]{biblatex}
+	\usepackage[style=numeric,natbib=true,backend=biber,mincitenames=1,maxcitenames=2,maxbibnames=99,uniquelist=false]{biblatex}
 	
 	% https://tex.stackexchange.com/a/334703/8850
 	\AtEveryBibitem{%
@@ -270,7 +276,7 @@ Düsseldorf, den \abgabedatum \hspace*{2cm} & \underline{\hspace{6cm}}\\
 \clearpage
 \begin{titlepage}
 
-\input{summary}
+\input{abstract}
 
 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
diff --git a/python/conda package/k_hop_dominating_set_gurobi/conda.recipe/meta.yaml b/python/conda package/k_hop_dominating_set_gurobi/conda.recipe/meta.yaml
index 8298f4a08cc77284b70c3f405508d1236d3e854a..2b5e42a4cf01c9bd15e58fb7682dd57b750dfb8b 100644
--- a/python/conda package/k_hop_dominating_set_gurobi/conda.recipe/meta.yaml	
+++ b/python/conda package/k_hop_dominating_set_gurobi/conda.recipe/meta.yaml	
@@ -8,6 +8,7 @@ package:
 
 source:
   path: ..
+#  path: 'https://gitlab.cs.uni-duesseldorf.de/albi/albi-students/bachelor-mario-surlemont/-/tree/draft/python/conda%20package/k_hop_dominating_set_gurobi'
 
 build:
   # If the installation is complex, or different between Unix and Windows, use
@@ -49,7 +50,7 @@ test:
     - pytest tests
 
 about:
-  home: https://github.com/mario.surlemont@uni-duesseldorf.de/k_hop_dominating_set_gurobi
+  home: https://gitlab.cs.uni-duesseldorf.de/albi/albi-students/bachelor-mario-surlemont
   summary: A set of python scripts to solve k hop dominating set variants using ILP and gurobi as MIP solver 
   license: {{ data['license'] }}
   license_file: LICENSE
diff --git a/python/conda package/k_hop_dominating_set_gurobi/k_hop_dominating_set_gurobi/cli.py b/python/conda package/k_hop_dominating_set_gurobi/k_hop_dominating_set_gurobi/cli.py
index c18d842562d3bd2d38fdd042989838b1b7d12526..417b61edf93f137972c17e01809e7da5b219d083 100644
--- a/python/conda package/k_hop_dominating_set_gurobi/k_hop_dominating_set_gurobi/cli.py	
+++ b/python/conda package/k_hop_dominating_set_gurobi/k_hop_dominating_set_gurobi/cli.py	
@@ -2,6 +2,7 @@ from argparse import ArgumentParser
 from k_hop_dominating_set_gurobi import __version__
 from k_hop_dominating_set_gurobi import k_hop_dom_set
 from k_hop_dominating_set_gurobi import lp_to_nx_graph
+import networkx as nx
 
 def cli(args=None):
     p = ArgumentParser(
@@ -21,19 +22,59 @@ def cli(args=None):
     )
     p.add_argument(
         '-g', '--graph',
-        help="input graph as .lp file")
+        help="input graph as .graphml file")
     p.add_argument(
         '-mtz', 
         action='store_true',
         help='use Miller-Tucker-Zemlin constraints to ensure connectivity (default is a lazy approach using vertex separators)')
+    p.add_argument(
+        '-imn', 
+        action='store_true',
+        help='use intermediate node constraint to shrink space of feasible solutions. Might exclude optimal solutions.')
+    p.add_argument(
+        '-rpl', 
+        action='store_true',
+        help='use constraint to reduce path length from the root to each node by the size of the solution to shrink space of feasible solutions.)')
+    p.add_argument(
+        '-gaus', 
+        action='store_true',
+        help='use constraint to reduce path length from the root to each node by a sum using the gaussian sum formula.')
+    p.add_argument(
+        '-pre', 
+        action='store_true',
+        help='preadd vertex separator constraints.')
     
-    args = p.parse_args(args)
     
-    G = lp_to_nx_graph.read(args.graph)
+    
+    args = p.parse_args(args)
+    filename = args.graph
+
+    if filename.endswith(".lp"):
+        G = lp_to_nx_graph.read(args.graph)
+    elif filename.endswith(".graphml"):
+        G = nx.read_graphml(args.graph)
+    elif filename.endswith(".gml"):
+        G = nx.read_gml(args.graph)
+    else:
+        return 1
+
+    additionalConstraints = []
+        
+    if args.imn:
+        additionalConstraints.append(k_hop_dom_set.AdditionalConstraint.INTERMEDIATE_NODE_CONSTRAINT)
+    if args.rpl:
+        additionalConstraints.append(k_hop_dom_set.AdditionalConstraint.SIMPLE_PATH_LENGHT_CONSTRAINT)
+    if args.gaus: 
+        additionalConstraints.append(k_hop_dom_set.AdditionalConstraint.GAUSSIAN_SUM_FORMULA)
+    if args.pre:
+        additionalConstraints.append(k_hop_dom_set.AdditionalConstraint.PREADD)
+
     if args.mtz:
-        ds = k_hop_dom_set.RootedConnectecKHopDominatingSet(G, args.k, constraints = k_hop_dom_set.ConnectivityConstraint.MILLER_TUCKER_ZEMLIN)
+        ds = k_hop_dom_set.RootedConnectecKHopDominatingSet(G, args.k, constraints = k_hop_dom_set.ConnectivityConstraint.MILLER_TUCKER_ZEMLIN, additionalConstraints = additionalConstraints)
     else:
-        ds = k_hop_dom_set.RootedConnectecKHopDominatingSet(G, args.k)
+        ds = k_hop_dom_set.RootedConnectecKHopDominatingSet(G, args.k, additionalConstraints = additionalConstraints)
+
+
     
     ds.solve_and_draw()
 
diff --git a/python/conda package/k_hop_dominating_set_gurobi/k_hop_dominating_set_gurobi/k_hop_dom_set.py b/python/conda package/k_hop_dominating_set_gurobi/k_hop_dominating_set_gurobi/k_hop_dom_set.py
index df1e5eabc5ad100c122d401c7b26f6b2780a928e..6d87bb1c78f5ecb8fd2429dcb9f7b6a4994b57f2 100755
--- a/python/conda package/k_hop_dominating_set_gurobi/k_hop_dominating_set_gurobi/k_hop_dom_set.py	
+++ b/python/conda package/k_hop_dominating_set_gurobi/k_hop_dominating_set_gurobi/k_hop_dom_set.py	
@@ -9,16 +9,19 @@ import networkx as nx
 import gurobipy as gp
 from gurobipy import GRB
 import datetime
-import sys
 import matplotlib.pyplot as plt
-import lp_to_nx_graph
 from itertools import combinations
 from enum import Enum
 
 class ConnectivityConstraint(Enum):
     SEPARATORS = 1
     MILLER_TUCKER_ZEMLIN = 3
-    MARTIN = 4
+    
+class AdditionalConstraint(Enum):
+    INTERMEDIATE_NODE_CONSTRAINT = 1
+    SIMPLE_PATH_LENGHT_CONSTRAINT = 2
+    GAUSSIAN_SUM_FORMULA = 3
+    PREADD = 4
     
 class KHopDominatingSet():
     
@@ -36,7 +39,6 @@ class KHopDominatingSet():
             self.m.addConstr((gp.quicksum(self.nodes[n] for n in k_neighborhood) +self.nodes[v]) >= 1 )
 
     def solve(self):
-        # TODO: refactor, maybe use self.nodes directly
         self.m.optimize()
         ds = {v for v in self.G.nodes  if self.nodes[v].x > 0.5}
         return ds
@@ -83,10 +85,11 @@ class ConnectedKHopDominatingSet(KHopDominatingSet):
             # given an undirected graph generates a graph which is bidirectional
             self.G_prime = self.G.to_directed()
 
-            n = len(self.G.nodes)
+            n = len(self.G.nodes) 
             self.G_prime.add_nodes_from([n+1, n+2])
             self.G_prime.add_edge(n+1,n+2)
             initial_nodes = self.G.nodes
+            first_node = list(initial_nodes)[0]
             
             self.G_prime.add_edges_from((n+1, i) for i in initial_nodes)
             self.G_prime.add_edges_from((n+2, i) for i in initial_nodes)
@@ -94,7 +97,9 @@ class ConnectedKHopDominatingSet(KHopDominatingSet):
             
             self.auxiliary = self.m.addVars(self.G_prime.nodes, vtype= GRB.INTEGER, name="auxiliary")
             
-            self.m.addConstr(gp.quicksum(self.edges[(n+2,i)] for i in self.G.nodes) == 1)
+            self.m.addConstr(self.edges[(n+2,first_node)] == 1)
+            self.m.addConstrs(self.edges[(n+2,i)] == 0 for i in self.G.nodes if i != first_node)
+            # self.m.addConstr(gp.quicksum(self.edges[(n+2,i)] for i in self.G.nodes) == 1)
             self.m.addConstrs(gp.quicksum(self.edges[(i,j)] for i in self.G_prime.nodes if i != j and (i,j) in self.G_prime.edges) == 1 for j in self.G.nodes)
             
             self.m.addConstrs(self.edges[(n+1,i)] + self.edges[(i,j)] <= 1 for (i,j) in self.G.to_directed().edges)
@@ -111,33 +116,7 @@ class ConnectedKHopDominatingSet(KHopDominatingSet):
             self.m.addConstrs(self.auxiliary[i] <= n+1 for i in self.G_prime.nodes if i != n+1)
             
             self.m.addConstrs(self.nodes[i] == 1-self.edges[(n+1,i)] for i in self.G.nodes)
-            
-        if ConnectivityConstraint.MARTIN == constraints:
-            # large integer
-            M = 99999
-            
-            E = [self.G.edges]
-            
-            self.edges = self.m.addVars(((i,j) for i in self.G.nodes for j in self.G.nodes), vtype = GRB.BINARY, name = "edges")
-            
-            self.z = self.m.addVars( (((i,j) ,k) for i in self.G.nodes for j in self.G.nodes for k in self.G.nodes), vtype = GRB.BINARY, name ="z")
-            
-            self.m.addConstr(gp.quicksum(self.edges) == gp.quicksum(self.nodes) - 1)
-            
-            self.m.addConstrs(self.edges[(i,j)] <= self.nodes[i] for (i,j) in self.G.edges)
-            self.m.addConstrs(self.edges[(i,j)] <= self.nodes[j] for (i,j) in self.G.edges)
-            
-            self.m.addConstrs(self.z[((i,j),k)] <= self.edges[(i,j)] for (i,j) in self.G.edges for k in self.G.nodes)
-            self.m.addConstrs(self.z[((j,i),k)] <= self.nodes[k] for (i,j) in self.G.edges for k in self.G.nodes)
-            
-            self.m.addConstrs(self.edges[(i,j)] - M*(3-self.nodes[i]-self.nodes[j]-self.nodes[k]) <= self.z[((i,j),k)] + self.z[((j,i),k)] for i in self.G.nodes for j in self.G.nodes for k in self.G.nodes)
-            self.m.addConstrs(self.z[((i,j),k)] + self.z[((j,i),k)] <= self.edges[(i,j)] +M*(3-self.nodes[i]-self.nodes[j]-self.nodes[k]) for i in self.G.nodes for j in self.G.nodes for k in self.G.nodes)
-                                    
-            self.m.addConstrs(1-M*(2-self.nodes[i]-self.nodes[j]) <= gp.quicksum(self.z[((i,k),j)] for k in self.G.nodes if k != i and k != j if (i,k) in self.G.to_directed().edges)  +self.edges[(i,j)] for i in self.G.nodes for j in self.G.nodes)
-            
-            self.m.addConstrs(self.edges[(i,j)] == 0 for i in self.G.nodes for j in self.G.nodes if (i,j) not in E)
-            self.m.addConstrs(self.z[((i,j),k)] == 0 for i in self.G.nodes for j in self.G.nodes for k in self.G.nodes if (i,j) not in E)
-            
+        
             
     def min_ij_separator(G, i, j, C_i):
         N_ci = {v for c in C_i for v in G.neighbors(c)}
@@ -155,8 +134,12 @@ class ConnectedKHopDominatingSet(KHopDominatingSet):
             self.m._vars = self.nodes
             self.m._G = self.G
             self.m.Params.lazyConstraints = 1
+            self.m._iteration = 0
+            self.m._ds = {}
+            self.m._hamming = []
             self.m.optimize(ConnectedKHopDominatingSet.elim_unconnectivity)    
-            # self.m.optimize()    
+            print("Number of resolved unconnected integer solutions: " + str(self.m._iteration))
+
         elif ConnectivityConstraint.MILLER_TUCKER_ZEMLIN == self.constraints:
             self.m.optimize()
         elif ConnectivityConstraint.MARTIN == self.constraints:
@@ -165,72 +148,18 @@ class ConnectedKHopDominatingSet(KHopDominatingSet):
         ds = {v for v in self.G.nodes  if self.nodes[v].x > 0.5}
         return ds
     
-    # Probably uncorrect version
-    # def elim_unconnectivity(model, where):
-    #     if where == GRB.Callback.MIPSOL:
-    #         vals = model.cbGetSolution(model._vars)
-    #         ds = {i for i in model._vars.keys() if vals[i] > 0.5}
-            
-    #         G_prime_prime = model._G.subgraph(ds)
-    #         if(not nx.is_connected(G_prime_prime)):
-    #             C = [c for c in nx.algorithms.components.connected_components(G_prime_prime)]
-    #             for i in range(len(C)-1):
-    #                 C_i = C[i]
-    #                 for j in range(i+1, len(C)):
-    #                     C_j = C[j]
-    #                     h = next(iter(C_i))
-    #                     l = next(iter(C_j))
-    #                     min_ij_sep = ConnectedKHopDominatingSet.min_ij_separator(model._G, h, l, C_i)
-    #                     model.cbLazy(gp.quicksum(model._vars[s] for s in min_ij_sep) >= model._vars[h] + model._vars[l] - 1)
 
-    # V1  
-    # def elim_unconnectivity(model, where):
-    #     if where == GRB.Callback.MIPSOL:
-    #         vals = model.cbGetSolution(model._vars)
-    #         ds = {i for i in model._vars.keys() if vals[i] > 0.5}
-            
-    #         G_prime_prime = model._G.subgraph(ds)
-    #         if(not nx.is_connected(G_prime_prime)):
-    #             C = [c for c in nx.algorithms.components.connected_components(G_prime_prime)]
-    #             for i in range(len(C)):
-    #                 C_i = C[i]
-    #                 for j in range(len(C)):
-    #                     C_j = C[j]
-    #                     h = next(iter(C_i))
-    #                     l = next(iter(C_j))
-    #                     min_ij_sep = ConnectedKHopDominatingSet.min_ij_separator(model._G, h, l, C_i)
-    #                     if min_ij_sep:
-    #                         model.cbLazy(gp.quicksum(model._vars[s] for s in min_ij_sep) >= model._vars[h] + model._vars[l] - 1)
-                            
-    # V2
-    # def elim_unconnectivity(model, where):
-    #     if where == GRB.Callback.MIPSOL:
-    #         vals = model.cbGetSolution(model._vars)
-    #         ds = {i for i in model._vars.keys() if vals[i] > 0.5}
-            
-    #         G_prime_prime = model._G.subgraph(ds)
-    #         if(not nx.is_connected(G_prime_prime)):
-    #             C = [c for c in nx.algorithms.components.connected_components(G_prime_prime)]
-    #             for i in range(len(C)):
-    #                 C_i = C[i]
-    #                 for j in range(len(C)):
-    #                     C_j = C[j]
-    #                     h = next(iter(C_i))
-    #                     l = next(iter(C_j))
-    #                     min_ij_sep = ConnectedKHopDominatingSet.min_ij_separator(model._G, h, l, C_i)
-    #                     if min_ij_sep:
-    #                         for w in C_i:
-    #                             model.cbLazy(gp.quicksum(model._vars[s] for s in min_ij_sep) >= model._vars[w] + model._vars[l] - 1)
-        
     # V3
     def elim_unconnectivity(model, where):
         if where == GRB.Callback.MIPSOL:
+            vals = model.cbGetSolution(model._vars)
+            ds = {i for i in model._vars.keys() if vals[i] > 0.9}
+            
+            G_prime_prime = model._G.subgraph(ds)
             if model._rooted:
-                vals = model.cbGetSolution(model._vars)
-                ds = {i for i in model._vars.keys() if vals[i] > 0.5}
-                
-                G_prime_prime = model._G.subgraph(ds)
                 if(not nx.is_connected(G_prime_prime)):
+                    model._iteration += 1
+                    # Hier an der Stelle dann die (unconnected) Lösung dem Set hinzufügen, das ausgewertet wird. 
                     C = [c for c in nx.algorithms.components.connected_components(G_prime_prime)]
                     C_root = [c for c in C if model._root in c].pop() # this is really awkward. Try to find something better!
                     for i in range(len(C)):
@@ -252,10 +181,6 @@ class ConnectedKHopDominatingSet(KHopDominatingSet):
                                     for w in C_i:
                                         model.cbLazy(gp.quicksum(model._vars[s] for s in min_ij_sep) >= model._vars[w] + model._vars[l] - 1)
             else:
-                vals = model.cbGetSolution(model._vars)
-                ds = {i for i in model._vars.keys() if vals[i] > 0.5}
-                
-                G_prime_prime = model._G.subgraph(ds)
                 if(not nx.is_connected(G_prime_prime)):
                     C = [c for c in nx.algorithms.components.connected_components(G_prime_prime)]
                     for i in range(len(C)):
@@ -271,19 +196,23 @@ class ConnectedKHopDominatingSet(KHopDominatingSet):
                         
 class RootedConnectecKHopDominatingSet(ConnectedKHopDominatingSet):
     
-    def __init__(self, G, k, root = 0, name = "RCkDS", constraints = ConnectivityConstraint.SEPARATORS):
+    def __init__(self, G, k, root = None , name = "RCkDS", constraints = ConnectivityConstraint.SEPARATORS, additionalConstraints = []):
         super().__init__(G, k, name, exclude = {root}, constraints = constraints)
-        self.root = root
-        
-        self.m.addConstr(self.nodes[root] >= 1)
+        if root is None:
+            self.root = list(G.nodes)[0]
+        else:
+            self.root = root
         
-        # self.m.addConstr(gp.quicksum(self.nodes) >= 12)
+        self.m.addConstr(self.nodes[self.root] >= 1)
         
-        # self.add_all_combinations_root_separators()
-        # print("neighborhood separators:")
-        # self.add_all_neighborhood_root_separators()
-        # print("single node separators:")
-        # self.add_single_root_separators()
+        if AdditionalConstraint.INTERMEDIATE_NODE_CONSTRAINT in additionalConstraints:
+            self.intermediate_node_constraint({root})
+        if AdditionalConstraint.SIMPLE_PATH_LENGHT_CONSTRAINT in additionalConstraints:
+            self.add_simple_path_length_constraint()
+        if AdditionalConstraint.GAUSSIAN_SUM_FORMULA in additionalConstraints:
+            self.add_gausian_sum_formula_constraint()
+        if AdditionalConstraint.PREADD in additionalConstraints and constraints is ConnectivityConstraint.SEPARATORS:
+            self.add_all_neighborhood_root_separators()
         
         
     def solve(self):
@@ -294,42 +223,26 @@ class RootedConnectecKHopDominatingSet(ConnectedKHopDominatingSet):
     def add_single_root_separators(self):
         number_of_found_separators = 0
         for i in self.G.nodes:
-            min_ij_sep = ConnectedKHopDominatingSet.min_ij_separator(G, i, self.root, {i})
+            min_ij_sep = ConnectedKHopDominatingSet.min_ij_separator(self.G, i, self.root, {i})
             if min_ij_sep:
                 self.m.addConstr(gp.quicksum(self.nodes[s] for s in min_ij_sep) >= self.nodes[i])
                 number_of_found_separators += 1
         print(f"number of preadded separators: {number_of_found_separators}")
         
-    # ToDo: refactor!
     def add_all_neighborhood_root_separators(self):
         number_of_found_separators = 0
         for v in self.G.nodes:
-            # V1
             to_add = set()
             if v is not self.root and self.root not in self.G.neighbors(v) and v not in self.G.neighbors(self.root) and not set(self.G.neighbors(self.root)).intersection(set(self.G.neighbors(v))):
                 for i in range(2,self.G.degree[v]+1):
                     V = {w for w in self.G.neighbors(v)}
                     V.update([v])
                     for i_neighborhood in combinations(V, i):
-                        # V3
-                        # to_add = set()
                         if v in i_neighborhood:
-                            # V2
-                            # number_of_found_separators += 1
                             min_ij_sep = ConnectedKHopDominatingSet.min_ij_separator(self.G, v, self.root, set(i_neighborhood))
-                            # V1, V3
                             to_add.add(frozenset(min_ij_sep))
-                            
-                            # V2
-                            # self.m.addConstr(gp.quicksum(self.nodes[s] for s in min_ij_sep) >= self.nodes[v])
-                        
-                            # V3 
-                            # number_of_found_separators += len(i_neighborhood)
-                        # V3
-                        # self.m.addConstrs(gp.quicksum(self.nodes[s] for s in min_ij_sep_to_add) >= self.nodes[w] for w in i_neighborhood for min_ij_sep_to_add in to_add)
-            # V1
+
             self.m.addConstrs(gp.quicksum(self.nodes[s] for s in min_ij_sep) >= self.nodes[v] for min_ij_sep in to_add)
-            # V1
             number_of_found_separators += len(to_add)
             
             print(f"number of preadded separators: {number_of_found_separators}")
@@ -345,24 +258,4 @@ class RootedConnectecKHopDominatingSet(ConnectedKHopDominatingSet):
         self.m.addConstrs(self.nodes[v] <= gp.quicksum(self.nodes[w] * gp.quicksum(self.nodes[h] for h in self.G.neighbors(w) if h is not v) for w in self.G.neighbors(v)) for v in self.G.nodes if v not in exclude)
 
     def intermediate_node_constraint(self, exclude):
-        self.m.addConstrs(2 * self.nodes[v] <= gp.quicksum(self.nodes[w] for w in G.neighbors(v)) for v in G.nodes if v not in exclude)        
-
-
-if __name__ == '__main__':
-    filename = sys.argv[1]
-    if filename.endswith(".lp"):
-        G = lp_to_nx_graph.read(sys.argv[1])
-    else:
-        G = nx.read_graphml(sys.argv[1])
-    if(len(sys.argv) > 2):
-        k = int(sys.argv[2])
-    else:
-        k = 1
-        
-    
-    # G = lp_to_nx_graph.read("/home/mario/Dokumente/Uni/Bachelorarbeit/git_repo/bachelor-mario-surlemont/python/lp graphs/small-leaf.lp")
-    # k = 1
-    dsProb = RootedConnectecKHopDominatingSet(G, k, next(iter(G.nodes)), constraints = ConnectivityConstraint.SEPARATORS)
-    dsProb.solve_and_draw()
-    # ds = KHopDominatingSet(G,k)
-    # ds.solve_and_draw()
+        self.m.addConstrs(2 * self.nodes[v] <= gp.quicksum(self.nodes[w] for w in self.G.neighbors(v)) for v in self.G.nodes if v not in exclude)        
diff --git a/python/conda package/k_hop_dominating_set_gurobi/setup.py b/python/conda package/k_hop_dominating_set_gurobi/setup.py
index c4f77128ce12c715804b08b06e53ba6b25f8f45f..18f3d39d5b5b2f4cd8a834b448d8849b0573d88d 100644
--- a/python/conda package/k_hop_dominating_set_gurobi/setup.py	
+++ b/python/conda package/k_hop_dominating_set_gurobi/setup.py	
@@ -3,8 +3,16 @@ import versioneer
 
 requirements = [
     # package requirements go here
+#    'gurobipy',
+    'networkx',
+#    'matplotlib.pyplot'
+    'matplotlib'
 ]
 
+#links = [
+#    'https://www.gurobi.com/downloads/'
+#]
+
 setup(
     name='k_hop_dominating_set_gurobi',
     version=versioneer.get_version(),
@@ -27,4 +35,5 @@ setup(
         'Programming Language :: Python :: 3.6',
         'Programming Language :: Python :: 3.7',
     ]
+#    dependency_links=links
 )