Skip to content
GitLab
Menu
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Sign in
Toggle navigation
Menu
Open sidebar
general
albi
Bachelor Mario Surlemont
Commits
1b55a361
Commit
1b55a361
authored
May 21, 2020
by
msurl
Browse files
added callback function for gurobi to lazily add connectivity constraints and refactored code
parent
f1dd6676
Changes
1
Show whitespace changes
Inline
Side-by-side
python/conda package/k_hop_dominating_set_gurobi/k_hop_dominating_set_gurobi/k_hop_dom_set.py
View file @
1b55a361
...
...
@@ -11,7 +11,7 @@ from gurobipy import GRB
import
datetime
import
sys
import
matplotlib.pyplot
as
plt
#
import lp_to_nx_graph
import
lp_to_nx_graph
class
DominatingSet
:
...
...
@@ -60,12 +60,20 @@ class KHopDominatingSet(DominatingSet):
class
ConnectedKHopDominatingSet
(
KHopDominatingSet
):
def
__init__
(
self
,
G
,
k
,
name
=
"CkDS"
):
def
__init__
(
self
,
G
,
k
,
name
=
"CkDS"
,
exclude
=
{}
):
self
.
G
=
G
super
().
__init__
(
G
,
k
,
name
)
# self.m.addConstr(gp.quicksum(gp.quicksum(self.nodes[w] for w in G.neighbors(v)) -2*self.nodes[v] for v in G.nodes) >= -2)
if
exclude
:
self
.
m
.
addConstrs
(
self
.
nodes
[
v
]
<=
gp
.
quicksum
(
self
.
nodes
[
w
]
for
w
in
G
.
neighbors
(
v
))
for
v
in
G
.
nodes
if
v
not
in
exclude
)
else
:
self
.
m
.
addConstrs
(
self
.
nodes
[
v
]
<=
gp
.
quicksum
(
self
.
nodes
[
w
]
for
w
in
G
.
neighbors
(
v
))
for
v
in
G
.
nodes
)
def
min_ij_separator
(
G
,
i
,
j
,
C_i
):
N_ci
=
{
v
for
c
in
C_i
for
v
in
G
.
neighbors
(
c
)}
G_prime
=
nx
.
Graph
(
G
)
...
...
@@ -77,17 +85,21 @@ class ConnectedKHopDominatingSet(KHopDominatingSet):
return
R_j
.
intersection
(
N_ci
)
def
solve
(
self
):
return
self
.
solve_iteratively
(
float
(
"inf"
))
self
.
m
.
_vars
=
self
.
nodes
self
.
m
.
_G
=
self
.
G
self
.
m
.
Params
.
lazyConstraints
=
1
self
.
m
.
optimize
(
RootedConnectecKHopDominatingSet
.
elim_unconnectivity
)
def
solve_iteratively
(
self
,
maxIterations
):
iterations
=
0
self
.
m
.
optimize
()
ds
=
{
i
for
i
,
x_i
in
enumerate
(
self
.
m
.
getVars
())
if
x_i
.
x
>
0.5
}
return
ds
ds
=
{
i
for
i
,
x_i
in
enumerate
(
self
.
m
.
getVars
())
if
x_i
.
x
==
1
}
def
elim_unconnectivity
(
model
,
where
):
if
where
==
GRB
.
Callback
.
MIPSOL
:
vals
=
model
.
cbGetSolution
(
model
.
_vars
)
ds
=
{
i
for
i
in
model
.
_vars
.
keys
()
if
vals
[
i
]
>
0.5
}
G_prime_prime
=
self
.
G
.
subgraph
(
ds
)
while
(
not
nx
.
is_connected
(
G_prime_prime
))
and
iterations
<
maxIterations
:
iterations
+=
1
G_prime_prime
=
model
.
_G
.
subgraph
(
ds
)
if
(
not
nx
.
is_connected
(
G_prime_prime
)):
C
=
[
c
for
c
in
nx
.
algorithms
.
components
.
connected_components
(
G_prime_prime
)]
for
i
in
range
(
len
(
C
)
-
1
):
C_i
=
C
[
i
]
...
...
@@ -95,46 +107,26 @@ class ConnectedKHopDominatingSet(KHopDominatingSet):
C_j
=
C
[
j
]
h
=
next
(
iter
(
C_i
))
l
=
next
(
iter
(
C_j
))
min_ij_sep
=
ConnectedKHopDominatingSet
.
min_ij_separator
(
self
.
G
,
h
,
l
,
C_i
)
self
.
m
.
addConstr
(
gp
.
quicksum
(
self
.
nodes
[
s
]
for
s
in
min_ij_sep
)
>=
self
.
nodes
[
h
]
+
self
.
nodes
[
l
]
-
1
)
self
.
m
.
optimize
()
ds
=
{
i
for
i
,
x_i
in
enumerate
(
self
.
m
.
getVars
())
if
x_i
.
x
==
1
}
G_prime_prime
=
self
.
G
.
subgraph
(
ds
)
min_ij_sep
=
ConnectedKHopDominatingSet
.
min_ij_separator
(
model
.
_G
,
h
,
l
,
C_i
)
model
.
cbLazy
(
gp
.
quicksum
(
model
.
_vars
[
s
]
for
s
in
min_ij_sep
)
>=
model
.
_vars
[
h
]
+
model
.
_vars
[
l
]
-
1
)
return
ds
,
iterations
def
solve_and_draw
(
self
,
iterations
=
float
(
"inf"
)):
starttime
=
datetime
.
datetime
.
now
()
ds
,
iterations
=
self
.
solve_iteratively
(
iterations
)
endtime
=
datetime
.
datetime
.
now
()
duration
=
endtime
-
starttime
duration_sec
=
duration
.
total_seconds
()
color_map
=
[
'red'
if
i
in
ds
else
'green'
for
i
in
self
.
G
.
nodes
]
print
(
f
"iterations:
{
iterations
}
, duration in seconds:
{
duration_sec
}
"
)
nx
.
draw_kamada_kawai
(
self
.
G
,
node_color
=
color_map
,
with_labels
=
True
)
plt
.
show
()
class
RootedConnectecKHopDominatingSet
(
ConnectedKHopDominatingSet
):
def
__init__
(
self
,
G
,
k
,
root
=
0
,
name
=
"RCkDS"
):
super
().
__init__
(
G
,
k
,
name
)
super
().
__init__
(
G
,
k
,
name
,
exclude
=
{
root
}
)
self
.
root
=
root
self
.
m
.
addConstr
(
self
.
nodes
[
root
]
>=
1
)
#
if __name__ == '__main__':
#
G = lp_to_nx_graph.read(sys.argv[1])
if
__name__
==
'__main__'
:
G
=
lp_to_nx_graph
.
read
(
sys
.
argv
[
1
])
# if(len(sys.argv) > 2):
# k = int(sys.argv[2])
# else:
# k = 1
# if(len(sys.argv) > 3):
# maxIterations = int(sys.argv[3])
# else:
# maxIterations = float("inf")
if
(
len
(
sys
.
argv
)
>
2
):
k
=
int
(
sys
.
argv
[
2
])
else
:
k
=
1
#
dsProb = RootedConnectecKHopDominatingSet(G, k, 0)
#
dsProb.solve_and_draw()
dsProb
=
RootedConnectecKHopDominatingSet
(
G
,
k
,
0
)
dsProb
.
solve_and_draw
()
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment