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Abstract. Cancer is a disease driven mostly by somatic mutations
appearing in an individual’s genome. One of the main challenges in large
cancer studies is to identify the handful of driver mutations responsi-
ble for cancer among the hundreds or thousands mutations present in
a tumour genome. Recent approaches have shown that analyzing muta-
tions in the context of interaction networks increases the power to iden-
tify driver mutations.

In this work we propose an ILP formulation for the exact solution
of the combinatorial problem of finding subnetworks mutated in a large
fraction of cancer patients, a problem previously proposed to identify
important mutations in cancer. We show that a branch and cut algo-
rithm provides exact solutions and is faster than previously proposed
greedy and approximation algorithms. We test our algorithm on real
cancer data and show that our approach is viable and allows for the
identification of subnetworks containing known cancer genes.

Keywords: Cancer mutations + Branch and cut + Combinatorial
optimization - Network analysis

1 Introduction

Recent advances in DNA sequencing technologies have allowed the study of
cancer genomes at an unprecedented level of detail. In particular, it is now
possible to measure all somatic mutations, changes in the DNA arising dur-
ing the lifetime of an individual and causing the disease, in a large number of
cancer patients [12,28]. These large cancer studies have shown that each indi-
vidual tumour harbours hundreds or thousands somatic mutations, with two
tumours showing a large diversity in the complement of somatic mutations they
exhibit [9,27]. This phenomenon is commonly referred to as (intertumor) cancer
heterogeneity.
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Cancer heterogeneity is explained by the fact that only a handful of all the
somatic mutations in a cancer genome are driver mutations related to the dis-
eases, while the majority of mutations are passenger mutations not related to
cancer progression and development. Moreover, driver mutations target regula-
tory and signaling pathways, groups of interacting genes that perform specific
functions in the cell [10,26] and that may be altered by mutating any of the
genes in the group. Therefore, to identify all driver mutations and the genes
they affect one cannot focus on genes in isolation, but has to study mutations
in the context of interaction networks [5].

In recent years, several methods have been proposed to identify significantly
mutated pathways in cancer [21]. Some of these methods work on known path-
ways [4], thus limiting our ability to identify novel pathways as well as subnetworks
connecting two pathways that are important for cancer. Other methods identify
significantly mutated pathways by combining mutation data with a large protein-
protein interaction network [14,15,18,23,25]. A common formulation is to look
for connected subnetworks that are mutated in a large number of patients, that
is equivalent to identifying connected subnetworks whose vertices cover a large
number of elements (i.e., patients) from a universe. In particular [25] defined the
connected maximum coverage problem (CMCP) as finding a connected subnet-
work of cardinality k that covers the maximum number of patients, proven to be
NP-hard in [25] where an approximation algorithm was also presented.

In this paper, we propose an integer linear programming formulation for
CMCP. Our formulation draws from an analogous formulation for Steiner tree
problems that have been the object of a recent DIMACS challenge [13]. In partic-
ular, the connectivity constraint leads to an exponential number of constraints
that we handle within a branch and cut framework. We show that our algo-
rithm allows for the identification of the optimal solution of CMCP on real
cancer datasets, and that the identified solutions cover more patients compared
to previously proposed heuristic approaches or approximation algorithms. We
also show that the subnetworks identified by our approach have higher statisti-
cal significance, estimated through permutation testing, compared to solutions
found by the approximation algorithm. We generalize our formulation to the
weighted version of the problem, and show that our branch and cut strategy
can be used to solve this formulation as well, and also show that our approach
identifies subnetworks of genes known to be associated with cancer.

Related Work. The computational problem of identifying connected subnet-
works with vertices covering a large number of elements have been studied in bioin-
formatics [14,15,24,25] as well as in wireless network design [16]. As mentioned
above, [25] studied the CMCP and provided an approximation algorithm for its
solution (see Sect. 2.1); [14,15,24] studied related, but different, problems. In gene
expression studies, [24] studied the problem of finding the smallest connected sub-
network such that at least k genes in the subnetwork are differentially expressed in
all patients but at most £. [14,15] study the problem of finding the minimum cost
collection of modules (i.e., subgraphs) covering each patient at least k times, where
a patient is covered by a module if at least one gene in the module is altered in the
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patient. The cost of a collection of modules is a function of the size of the modules
and other pairwise properties of the genes in the module (e.g., their distance in a
network; the degree of exclusivity of alterations).

The CMCP has some similarity with the cardinality constrained Maximum
Weight Connected Subgraph Problem [1,6], that asks to find a connected sub-
graph with maximum total weight in a node-weighted graph, and with the prize-
collecting Steiner Tree Problem [8,13,19], that asks to find a subtree of minimum
costs that spans all vertices from a set of terminals. Different ILP formulations
for these problems have recently been studied both theoretically and in prac-
tice [1,6,29]. The main issue from an ILP perspective is modeling the connec-
tivity requirement. In the formulations of [1,6], the connectivity constraints are
formulated by means of a root node and a generalized form of node separators.
With this approach, an additional set of node variables is needed to locate the
root. Later [8] proposes a thinned formulation that does not need a root and vari-
ables to locate it and that uses node separators in non-generalized form. Both
formulations exhibit an exponential number of connectivity constraints; there-
fore, branch and cut (B&C) algorithms have been used to solve these models.
In this approach connectivity constraints are not explicitly declared, rather they
are introduced during the search when they are needed. The B&C algorithm by
[1,6] finds violated connectivity cuts by identifying a minimum cut in a support
digraph. The B&C algorithm by [8] uses a lazy approach in which violated con-
straints are only searched when an integer solution is found and employs a linear
time algorithm to discover minimal node separators that are facet-defining. [3]
introduced a flow based, polynomial size formulation for connectivity constraints
for the problem of finding colorful connected subgraphs.

We note that while the connectivity requirement of CMCP is the same as
the connectivity requirements in the Maximum Weight Connected Subgraph
Problem and the prize-collecting Steiner Tree Problem, the latter two problems
have objective functions that are additive in the vertices chosen in the solution
(and also in the edges for the prize-collecting Steiner Tree Problem), while the
objective function for the CMCP is the more complicated coverage function,
that is a submodular set function [16].

2 Model and Algorithms

We are given a graph G = (V, E), with vertices V' = {1, ..., n} representing genes
and edges F representing interactions among genes (or the associated proteins).
Let P denotes the set of patients for which mutations have been assayed. Let
P; C P be the set of patients in which gene i € V is mutated. We say that a
patient 7 € P is covered by a subset of vertices S C V, if there exists at least
one vertex v in S such that j € P,,.

Our goal is to identify connected subgraphs of G that are mutated in a large
number of patients, where a subgraph is mutated in a patient if at least one of
the vertices in the subgraph covers the patient. More formally, we consider the
following problem, defined in [25].
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Fig. 1. Left: an instance of CMCP, with blue vertices and black edges representing G,
red vertices representing patients P and gray lines linking patients to their mutated
genes. Right: an optimal solution (in blue) to the instance on the left for k = 2. Patients
covered by the optimal solution are in red. (Color figure online)

Connected Maximum Coverage Problem (CMCP). Given a graph G
defined on a set of n vertices V', an integer k > 0, a set P, a family of subsets P =
{P1,...,P,} where for each i, P; C P is associated with i € V, find the connected
subgraph S* C G with k vertices that maximizes the coverage | U;cs+ Pj|.
Figure 1 shows an instance of CMCP. If G is a complete graph, the connected
maximum coverage problem is the maximum coverage problem [11], where, given
a set U of elements, a family of subsets F C 2V, and a value &, one needs to find
a collection of k sets in F that covers the maximum number of elements in U.
The maximum coverage problem is NP-hard [11], thus, the connected maximum
coverage problem is NP-hard for a general graph and even for star graphs [25].

Preprocessing. Only connected components of G of size >k need to be considered.
The problem can be solved for each of those components in turn, returning the
best solution found. Nodes v € V that cannot be in an optimal solution are
removed using the following rules: (i) v has degree 1, P, = ), and after removal
the number of nodes in the connect component is >k; (ii) there is a node v’ # v
whose set of neighbors is a superset of the set of neighbors of v and the set P,
is a superset of the set P,.

The rest of the section is organized as follows: Sect. 2.1 reviews previously
proposed algorithms for the CMCP; Sect. 2.2 presents our ILP formulation for
the CMCP and the corresponding branch and cut algorithm; Sect. 2.3 extends the
ILP to a weighted version of the CMCP; and Sect. 2.4 describes the permutation
test used to assess the statistical significance of the solutions.

2.1 Previous Methods: Approximation Algorithm and Greedy
Algorithms

In this section we present previously proposed methods as well as simple greedy
algorithms for the CMCP. [7] proposed a polynomial time 1/(cr)-approximation
algorithm, where ¢ = (2e—1)/(e—1) and r is the radius of optimal solution in the
graph. The algorithm starts by computing and storing all pairs shortest paths.
Then the algorithm finds a solution starting from each node v of the graph, and
at the end reports the best solution found. Given the current solution S obtained
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starting from vertex v, the algorithm augments it by adding the (shortest) path
to a vertex w that maximizes the ratio between the number of newly covered
patients and the number of new vertices added to the solution, while keeping
the number of vertices in the solution <k. We also implemented two variants of
the approximation algorithm that do not compute all pairs shortest paths and
differ in the way they define candidate paths to extend the current solution. The
first variant (bfs) performs a BFS (of depth <k) starting from the node v from
which the solution is grown. The second variant (ratio) considers all paths (not
only shortest ones) among pairs of vertices, and it does not guarantee to run in
polynomial time but has been shown to run efficiently on real datasets [7].

We also consider a simple greedy algorithm that builds a solution starting
from each vertex v and reports the best solution found. The algorithm builds
a solution by always adding to the current solution S the neighboring node
providing the maximum increase in the coverage.

2.2 ILP Formulation and Branch and Cut Algorithm

Our ILP formulation for CMCP is analogous to a recent formulation [8] for the
prize-collecting Steiner Tree problem. It involves only node variables and is based
on node separator inequalities, some of which can be proved to be facet defining
for the connected subgraph polytope [29].

Given the graph G = (V, E) and two distinct nodes h and £ from V', a subset
of nodes N C V\ {h, ¢} is an (h,£) (node) separator if and only if after removing
N from V there is no path between h and £ in G. Let N'(h, ) denote the family
of all (h,£) separators. A separator N € N(h,f) is minimal if N \ {i} is not
an (h, ) separator, for any i € N. We use binary coefficients a,; for i € V' and
j € P to indicate whether i covers j (i.e., gene ¢ is mutated in patient j), that
is, a;; = 1if j € P;, and a;; = 0 otherwise. Let x; for ¢ € V' be binary variables
such that xz; = 1 if the vertex i is in the solution S C V and z; = 0 otherwise,
and let y; for ¢ € V be binary variables such that y; = 1 if patient j is covered
by S and y; = 0 otherwise. We formulate the CMCP as an ILP as follows:

max Z Yj (1)

jeEP
foi =k (2)
eV
Zaijﬂ% > Yj VjePr (3)
eV
Zzizthrzgfl Vh,teV,h# YN eN(h,) (4)
1€EN
xz; € {0,1} viev (5

y; €{0,1} viepP  (6)
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Constraints (2) impose that exactly k& nodes of V' are in the solution S. Con-
straints (3) ensure that the variables y; are set to one only when the correspond-
ing j € P is covered. Constraints (4) are the node separator constraints for the
connectivity requirement. They ensure that for any pair of nodes h, ¢ in S there
is a path in the graph induced by S, i.e., for any node separator N € N'(h,¥)
at least one node in N must also be selected. [29] shows that the constraints
(4) are facets defining for the connected subgraph polytope if and only if N is a
minimal node separator separating h and .

The Branch and Cut Algorithm. Our B&C algorithm (B&C) is analogous
to the one for the Steiner tree problem in [8]. The connectivity cuts (4) are
treated as lazy constraints, that is, they are not explicitly represented in the
initial ILP model but they are introduced only when an integer solution that
violates any of these constraints is found. B&C starts by including only a special
case of inequalities (4), i.e., z; < > ycy.(;pyep @ for all i € V. They state
that a node, if selected, must have a neighbor also selected. At any node of
the branch and bound tree an integral solution & to the model (1)—(6) with a
subset of the constraints (4) gives a set of nodes S = {i € V | & = 1}. If the
solution is not feasible with respect to the full model, then in the subgraph of G
induced by S there are disjoint connected components. Let Cy, and Cy be two such
components, containing the nodes h and ¢, respectively. Then, the linear time
algorithm from [8] reported in Fig. 2 and exemplified in Fig. 3 finds the minimal
node separator that must be added to the model. In our implementation, for an
integer solution with m disjoint connected components we find the minimal node
separator for all m x (m—1) combinations and add all corresponding constraints.
B&C terminates when an integer solution that does not violate any lazy constraint
and whose value is proven optimal is found.

Function FINDMINNODESEPARATOR(G, S, {h,(} € S,C})
A(C},) < neighbors of nodes of Cj, in G
G’ «— G with all edges between vertices in Cj, U A(C}) removed
Ry + nodes that can be reached from ¢ in G’
return N = A(Cy) N Ry

ook N

Fig. 2. Linear time algorithm for finding a minimal node separator N. The input is G,
two nodes h and ¢ of an infeasible solution .5, and the connected component Cy, of the
subgraph of G induced by S containing h and not containing ¢.

2.3 Weighted Model

We extend the ILP formulation to the case where for each (gene) vertex i € V
and each patient j € P we have a weight w;; that we gain when ¢ is used to
cover j; the objective is to maximize the weight of the covered patients with at
most one gene that can be picked to cover a patient. Without loss of generality
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Fig. 3. Left: example of disconnected solution S (black nodes). Blue nodes are nodes
A(Ch), neighbors of Ch, and constitute a non minimal node separator. Middle: grey
and blue nodes represent the nodes in R, that are reachable from ¢ in G’ and the
blue nodes constitute the minimal node separator. Right: the red nodes represent the
minimal node separator determined repeating the same procedure for component C,.
(Color figure online)

we assume that for all i € V and all j € P : w;; <1 (weights can be normalized
by dividing them by the highest value). We introduce binary variables z;; for
all pairs 2 € V' and j € P;. The interpretation of z;; is that z;; = 1 if gene &
is chosen to cover patient j, and z;; = 0 otherwise. For j € P, let M; be the
set of genes mutated in j. We define the following model: we keep the objective
function (1) and the constraints (2), (4), (5) and add the following constraints:
(7) T; > Zij, Vi € V,5 € Py (8) Yj < WijZij + (1 — Zij>, Vi € V,5 € Py (9)
y; < ZieMj zij, ¥ € P; (10) 0 < y; < 1, Vj € P. Note that y,; are now
continuous variables and that for a feasible solution we may have that for some
jeEP: ZieMj z;; > 1, however at the optimal solution ZieMj zi; < 1 (assuming
all weights are different).

2.4 Permutation Test

We use a permutation test to assess the statistical significance of the subnetworks
identified by the methods above. In particular, we generate datasets under the
null hypothesis by permuting the identity of the genes in the network. The test
statistic used to compute the (empirical) p-value is the value of the objective
function of the solution. Given a permuted dataset and the value X of the test
statistic obtained from the solution found using the real dataset, we are only
interested in knowing if there is solution with test statistic >X in a permuted
dataset. Hence, we can stop an algorithm as soon as we are sure that the statistic
on the current permuted dataset will be either certainly larger or certainly lower
than the observed value X. This can be easily implemented in the branch and
bound framework of B&C by adding a constraint on the value of a feasible solution,
so that we can halt the search when either the lower bound of B&C becomes >X
or when the upper bound becomes <X.

We note that when a significant correlation between the degree of a node and
its coverage is present, permuting the identity of the genes in the network may
overestimate the significance of the subnetworks identified. We therefore checked
if in our instances there was a high correlation between degree and coverage of
the nodes: in all instances the absolute value of such correlation is low (<0.08).
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3 Results

In this section we describe the cancer data and the computing environment used
in our experiments and the results obtained on the cancer datasets.

Data. We use the HIPPIE network! [22]. The corresponding interaction graph
G consists of 15094 nodes and 188891 edges. Mutation data is obtained from the
TCGA Pan-Cancer analysis® [18,28], with mutations of all genes measured in
3425 patients from 11 cancer types. We considered datasets of individual cancer
types as well as all samples together, the latter referred to as pancan dataset
(Table1).

In all our experiments we performed the preprocessing described in Sect. 2,
and we report running times for methods after the preprocessing.

Table 1. Cancer datasets. For each dataset, we report the number genes of gene nodes
in graph G after preprocessing and the number |P| of patients in the instance.

Dataset | Genes | |P| | Dataset | Genes | |P| | Dataset | Genes | |P| | Dataset | Genes | |P)|
pancan | 12310 | 3412 | coadread | 12088 | 495 | kirc 11611 | 424 | lusc 11752 | 177
blca 11424 | 100 | gbm 11452 | 276 | laml 10964 | 194 | ov 11536 | 456
brca 11535 | 506 | hnsc 11738 | 306 | luad 11740 | 230 | ucec 11865 | 248

Computing Environment and Solver Configuration. We implemented B&C in Py-
thon 2.7.5 using Gurobi 6.5.0 and callback functions. All experiments were con-
ducted on local nodes of a computing cluster. Each node had the following
configuration: two Intel E5-2680v3 CPUs with 12 CPU cores each, amounting to
24 cores in total, 64 GB RAM and 200 GB local SSD storage. All parameters in
Gurobi were left at their default values, except for the number of threads that
was set to one. In this way, experiments to compare the running times among
different programs are conducted with serial computation. In permutation tests,
we first solved the real dataset instance using a single thread and, then, the per-
muted datasets in parallel, one dataset per process, using python multiprocessing
module and work stealing strategy.

We run the approximation and the greedy algorithms described in Sect. 2.1
and our B&C on the datasets of Table1 for £ = 10, 15, and 20. For each pair
(dataset, k), Table 2 shows the coverage of the best solution found by the various
algorithms and the running time (median over 10 runs). We observe that for only
five of the 36 pairs (dataset, k) the approximation or greedy algorithms identify
solutions with coverage as high as the the optimal found by B&C. Even more
interestingly, the runtime of the B&C is comparable to the runtime of the greedy
algorithm, and it is above 1 min only for 11 pairs (instance, k), and only twice
above 5min. For k& = 10, we also compared the runtime of the B&C with the
runtime of an ILP formulation that models connectivity constraints as in [6],

! http://cbdm-01.zdv.uni-mainz.de/~mschaefer /hippie/.
2 http://compbio-research.cs.brown.edu/pancancer /hotnet2/.
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Table 2. Comparison of algorithms. For each pair (dataset, k), the coverage (cov) of the
solution reported by the various algorithms and their running time (time [hh:mm:ss])
are shown. In bold: coverages of solutions from B&C that are strictly higher then coverage
of solutions from approximation and greedy algorithms; runtimes of B&C that are lower
than runtimes of greedy algorithm.

Dataset | k | approximation | bfs ratio greedy flow B&C
Cov | Time |Cov |Time |Cov | Time Cov |Time |Cov |Time Cov | Time
pancan 10| 1804 | 4:00:12| 1804 | 2:08:30 | - >12h 1469 | 0:00:55 | 1855 | >18 h 1855|0:00:34
15|2072|4:30:14 | 2079 | 2:42:24 | - >12h 1648 |0:01:48 2168 | >18h 2168 0:00:38
202276 |5:01:51 2277 3:10:17 | - >12h 1817|0:02:33|2361 | >18h 2361 | 0:02:05
blca 10|84 2:29:19 |85 1:04:08 |87 |6:15:03 |79 0:00:34 | 87 9:09:23 |87 0:02:06
15|94 2:44:52 |93 1:19:21 /96 |6:44:01 |86 0:01:01 |97 8:35:49 |97 0:02:40
201|100 |2:59:28 100 |1:36:49|100 |7:03:14 |93 0:01:29 {100 |4:40:14 |100 |0:02:23
brca 10190 |2:30:25|193 |1:03:45|189 |7:42:21 |162 |0:00:34|196 |6:55:42 |196 |0:00:09

15|229 |2:43:46 | 229
20258 |3:00:06 258
coadread | 10 | 468 |3:06:52 | 468
15479 |3:25:38|479
20485 |3:48:49 484
gbm 10| 173 |2:27:19|170
15193 |2:42:53|192
20209 |2:58:39|209
hnsc 10|208 |2:42:36|208
15|241 |2:56:58|241
20(259 |3:11:00 260
kirc 10335 |2:32:54|337
15|352 |2:48:38|353
20(366 |3:07:14| 366
laml 10|96 2:07:23 |97

15109 |2:20:35|109
20118 |2:35:59|119
luad 10| 183 |2:42:34|184
15202 |2:55:32|201
20213 |3:12:17 213
lusc 10| 159 |2:43:13|160

:19:40 226 |8:17:40 |184 |0:01:03 /236 |6:59:14 |236 |0:00:43
32:21|256 | 8:42:12 233 |0:01:34 270 |8:16:49 |270 |0:01:42
25:02 | - >12h 454 |0:00:41 472 |0:14:41 |472 |0:00:23
46:10 | - >12h 465 |0:01:13|481 |6:29:51 |481 |0:00:50
04:56 | - >12h 473 |0:01:49 | 488 |7:31:48 |488 |0:01:05
03:22|172 |6:38:31 |142 |0:00:32|176 |1:33:48 |176 |0:00:23
17:23|194 |7:14:15 |152 |0:00:56 |198 |3:04:07 198 |0:00:38
34:27|210 |7:39:26 |158 |0:01:23 215 |3:11:56 |215 |0:01:07
08:37|205 | 7:50:45 |181 |0:00:37|214 |6:58:14 |214 |0:01:22
23:36 240 |8:36:33 |206 |0:01:08|248 |7:01:28 |248 |0:00:58
43:39 (260 | 9:11:04 |225 |0:01:44 267 |12:37:39|267 |0:03:16
02:42|328 [9:17:26 | 306 |0:00:34 337 |0:22:21 |337 0:00:06
19:03|350 |9:49:22 321 |0:01:04|359 |0:32:10 |359 |0:00:18
38:15|362 [ 10:33:34 331 |0:01:36 374 |0:56:15 |374 |0:00:34
55:42 |93 |5:10:48 |79 0:00:27 | 98 1:56:59 |98 0:00:08
09:39|105 |5:30:37 |84 0:00:44 111 | >18h 111 |0:00:18
23:56 | 113 | 5:52:13 |89 0:00:58 122 |0:04:13 |122 |0:00:28
08:58 | 185 |9:24:50 |171 |0:00:36 188 |4:16:21 |188 |0:00:55
25:29 201 |8:22:01 |183 |0:01:06|206 |7:20:46 |206 |0:02:18
41:32|213 | 8:58:25 |189 |0:01:40|219 |7:25:30 |219 |0:04:55
10:05|159 |7:36:18 |145 |0:00:36 |160 |13:24:59|160 0:04:09
15170 |2:57:22|170 :26:39 169 |8:04:27 |158 |0:01:07|173 |>18h 173 |0:14:07
20|176 |3:16:17|177 :45:46 | 176 |8:53:21 | 167 |0:01:39|177 |>18h 177 0:05:38
ov 101|259 |2:33:15|258 |1:05:38|263 |9:51:42 | 253 |0:00:34|264 |0:45:25 |264 |0:00:14
15284 |2:48:59|284 |1:22:26|288 |10:27:14 267 |0:01:00|290 |2:31:51 |290 |0:00:25
20304 |3:04:25/306 |1:38:59|306 |11:18:41|277 |0:01:28|313 |2:57:04 |313 |0:00:42
ucec 10209 |2:53:05|209 |1:18:22|210 [9:03:36 |194 |0:00:38 211 |0:21:33 |211 |0:00:12
15/218 |3:12:04|218 |1:35:53|219 |9:41:43 | 204 |0:01:07|222 |9:44:56 |222 |0:00:35
20226 |3:31:24228 |1:58:31|227 |10:22:08 211 |0:01:39|231 |10:23:55|231 |0:00:49

i e i e e = e e e e e e e e e R e

[N

adds forbidden solution cuts whenever a nonconnected integer solution is found,
and employs a min-cut flow algorithm on fractional solutions for separation (as
in [6]). The results in Table2 (column flow) show that the B&C approach we
propose is much faster than this alternative ILP approach.

To test the scalability of our B&C algorithm, we generated one larger instance
by replicating the mutations in the pancan dataset three times, for a total of
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Table 3. Permutation test results. For each pair (instance, k) and each combination
of algorithms used on real dataset and permuted datasets, the p-value (from 100 per-
mutations) is reported.

Instance | k | p-value: real dataset/permuted datasets | Instance | k | p-value: real dataset/permuted datasets
B&C/B&C | bfs /B&C | bfs/bfs B&C/B&C | bfs /B&C | bfs/bfs
pancan 10/0.01 0.02 0.01 kirc 10| 0.02 0.02 0.01
15/0.01 0.09 * 15/0.01 0.18 0.03
blca 10/0.13 0.54 0.28 laml 10/0.02 0.06 0.02
15/0.34 0.99 0.85 15/0.02 0.08 0.02
brca 10/0.01 0.02 0.01 luad 10/0.14 0.53 0.3
15/0.03 0.17 0.04 15/0.32 0.85 0.49
coadread |10 0.01 0.3 0.16 lusc 10/0.77 0.77 0.6
15/0.11 0.52 0.14 15|0.69 1 0.83
gbm 10/0.13 0.55 0.39 ov 10/0.03 0.19 0.1
15/0.18 0.75 0.39 15/0.06 0.41 0.14
hnsc 10/0.17 0.56 0.17 ucec 10| 0.01 0.03 0.02
15/0.07 0.38 0.06 15|0.02 0.36 0.12

*denotes experiments that did not complete in <2h.

Table 4. Weighted model results. For each dataset and value of k, the weight of the
optimal solution and the median runtime over 10 runs is shown.

Dataset | k | Weight | Runtime [s] | p-value |k | Weight | Runtime [s] | p-value | k | Weight | Runtime [s] | p-value
brca 10|127.06 | 22.29 0.01 15|137.06 |141.04 0.01 20/141.98 | 184.16 0.03
gbm 10|93.37 130.41 0.03 15/94.26 | 341.02 0.02 20/94.69 |479.55 0.01

10275 patients in P. On such instance, B&C identifies the optimal solution in
257s for k = 10, 270s for k = 15, and 435s for k£ = 20.

We also compared the statistical significance of the results obtained using
B&C for k = 10,15 with the statistical significance of the results obtained using
the variant bfs of the approximation algorithm, that reported the best solution
among the approximation and greedy algorithm in most cases. In particular, we
used bfs to obtain the best solution on the instances from Table 1 and used bfs
in the permutation test of Sect.2.4 to compute the p-value for such solutions.
We repeated the same experiment (with the same permuted datasets) using B&C
instead of bfs for both the instances in Table 1 and the permuted datasets. We
also used B&C to compute the p-value for the solutions obtained by bfs on real
data. Results are shown in Table 3. We observe that B&C almost always identifies
more statistically significant solutions compared to bfs. Moreover, in several
instances we see that the solution obtained by bfs appears significant when bfs
(that does not identify the optimal solution) is used for the permuted datasets,
while the significance of such a solution is greatly reduced when B&C (that does
identify the optimal solution) is used instead.

We considered the model with weights from Sect.2.3 and tested it on the
brca and gbm datasets. Similarly to the analysis performed in [18], the weights
are obtained as —log;,¢qi, where ¢; is the MutSigCV? [17] g-value for gene
i. Weight, runtime, and p-value of optimal solutions are presented in Table4.

3 http://firebrowse.org.
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While the runtime increases, as expected for these more complicated formula-
tion, it still remains feasible to identify statistically significant large subnetworks
of high weight. For brca and k£ = 10, our B&C algorithm identifies the subnetwork
containing genes {BMI1, CTCF, ELAV1L, FOXA1, GATA3, MLL3, NCORI,
PTEN, RUNXI1, TBX3}. While the last 6 genes were reported as significantly
mutated by single gene test in the TCGA publication on the same dataset [20],
CTCF and FOXA1 are known cancer genes that did not pass significance for
single gene testing in [20]. Further, the polycomb group gene BMI1 is mutated
with low frequency, but has been reported to be involved in various cancers [2].

4 Conclusions and Discussion

We presented a novel algorithm for the connected maximum coverage problem,
previously proposed for finding frequently mutated subnetworks in cancer. Our
algorithm is based on an ILP formulation solved in a branch and cut frame-
work. Our results show that our algorithm identifies subnetworks more frequently
mutated and of higher statistical significance compared to previously proposed
algorithms and to greedy approaches, while maintaining a runtime lower than
or comparable to the runtime of greedy approaches. We also generalised our for-
mulation to the case of weights for each gene in each patient, and showed that
using this formulation we identify networks containing cancer genes that are not
identified by single gene tests. While we considered a protein-protein interaction
networks as interaction graph, our approach is also applicable when a diffusion-
based influence graph [25] is used. In this work we focused on CMCP, but we
believe that our framework could be beneficial to other optimization problems
in bioinformatics where connected subgraphs are sought.
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