
INSTITUT FÜR INFORMATIK
Algorithmische Bioinformatik

Universitätsstr. 1 D–40225 Düsseldorf

Solving Connected Dominating Set Variants
Using Integer Linear Programming

Mario Surlemont

Bachelorarbeit

Beginn der Arbeit: 12. Mai 2020
Abgabe der Arbeit: 17. August 2020
Gutachter: Prof. Dr. Gunnar Klau

Prof. Dr. Michael Leuschel

Erklärung

Hiermit versichere ich, dass ich diese Bachelorarbeit selbstständig verfasst habe. Ich habe
dazu keine anderen als die angegebenen Quellen und Hilfsmittel verwendet.

Düsseldorf, den 17. August 2020
Mario Surlemont

1 Abstract

Maximizing photosynthetic outcomes is one of many different objectives of a plant. In
this thesis we present and evaluate a method to predict an optimal venation pattern for
leafs based on the minimal number of leaf cells that have to be transformed into vein cells
to supply the entire leaf with nutrients and water. The model only focuses on the number
of cells and disregards other aspects of the vascular system, like the vein hierarchy. To im-
plement this model we used a special variant of the Minimum Dominating Set Problem
which we implemented using Integer Linear Programming. We call this variant to model
the vascular system the Minimum Connected rooted k-hop Dominating Set Problem. Our
results show that our implementation is not capable of solving larger instances in a rea-
sonable amount of time. In comparison to an implementation in Answer Set Program-
ming our implementation performs worse using the instances that represent plant leafs.
We present a detailed comparison between both versions and tested instances of different
structure and size. We analyzed why the Integer Linear Programming implementation
performs bad on the leaf graphs. The tests also revealed that on randomly generated
graphs the Integer Linear Programming implementation outperformed the Answer Set
Programming implementation.

2 1 ABSTRACT

CONTENTS i

Contents

1 Abstract 1

2 Introduction 1

3 Preliminaries 3

3.1 Linear Programming . 3

3.2 Definitions . 3

4 Methods 5

4.1 Minimum Dominating Set . 5

4.2 Minimum k-hop Dominating Set . 5

4.3 Connectivity . 6

4.4 Minimum connected k-hop Dominating Set 11

4.5 Minimum rooted connected k-hop Dominating Set 12

4.6 Additional methods to tighten up the space of feasible solutions 12

5 Implementation 14

6 Results 15

7 Discussion 27

8 Conclusion 30

A Appendix 32

References 38

List of Figures 40

List of Tables 40

1

2 Introduction

Plants try to optimize their architecture to fulfil different objectives. One of it is to maxi-
mize the photosynthetic output. Another one is to minimize the cost to build the vascular
system [4]. To maximize the photosynthetic output plants optimize different parameters.
As increasing one parameter can reduce another one, many parameters can not be opti-
mized at the same time [4] [14]. In this thesis we focus on one particular mechanism how
plants can optimize their photosynthetic output.

To generate photosynthetical gains plants need sunlight, carbondioxid and water. (Pho-
tosynthese zitat.) Water and nutrients are supplied via the vascular system. Xylem
transports water to the leaves where the mesophyl cells produce sugars. These sugars
are carried out to the whole plant by phloem, a tissue specialized on transporting sugars.
Xylem and phloem cells are not able to generate sugars, but they are mandatory to sup-
ply water to the mesophyl cells and to transport sugars. To be satisfied with the amount
of water mesophyl cells have access to, they must not be more than 2-3 cells away from
a xylem cell. In this range water can flow from the xylem cells through mesophyl cells
that are not next to a xylem cell via diffusion. At the same time sugars can be transported
away from the mesophyl cells and supplied to the phloem if there is a phloem cell in the
range of 2-3 cells. (Zitat finden.)

To produce as much sugar as possible the plant can try to(driven by evolutionary pro-
cesses) maximize the number of mesophyl cells by minimizing the number of vein cells.
In this thesis we describe a method to reproduce an optimal venation pattern that mini-
mizes the number of vein cells with respect to the constraint that all mesophyl cells need
to be in a fixed range to vein cells. Leaf veins have a hierarchy. In general there is at
least one thick major vein branch and several narrow minor branches. This hierarchy is
completely disregarded in our problem formulation. Environmental circumstances also
influence the venation pattern [16]. These influences on the venation are also completely
disregarded in our model. The input instance is given by an undirected graph G = (V,E)
that represents a leaf. The set of vertices V represents the leaf cells while the set of edges
E represents the connections between the leaf cells in the form of plasmodesmata. To
find an optimal pattern we use a special variant of the dominating set problem. For this
problem we present an ILP-formulation and an implementation in a branch and cut fra-
menwork.

The dominating set problem and several variants are NP-hard [9]. For our specific case
we demand connectivity between the members of the set. This connectivity in ILP-
formulations is subject of different prublications as it is not trivial. Hyunh [10] presented
in her bachelors thesis an alternative to ILPs. She implemented an algorithm for our prob-
lem using Answer Set Programming (ASP). For larger input instances the ASP-version
did not create optimal solutions in a reasonable amount of time. Hyunh [10] compared
for the case where the dominating set does not need to be connected the runtime from an
ILP-Version to the runtime from her ASP-version. Her tests revealed that for this partic-
ular problem the ILP-version performed significantly better.

Goal of this thesis is to formulate an ILP and to evaluate wether if this performs better
on our input graphs. We compared the ASP-version with an ILP-formulation that was
created in this thesis. Contrary to the presumption that the ILP-version could generate

2 2 INTRODUCTION

solutions faster, on our input instances the ASP-version was significantly faster. How-
ever the ILP-version outperformed the ASP-version on random graphs. The different
characteristics and the runtime for the graphs can be taken from the results section. In
the discussion section we discuss which characteristics are responsible for the differences
in the runtime and what effect initiates them. In Section 2, the Preleminaries, we will give
a short introduction in ILP. Additionally important defintions are stated. After that in the
following Section 3 we define the methods to find an optimal venation pattern. Section 4
demonstrates the implementation. At last in Section 4 and Section 5 we present the results
and followed by a discussion on the effectiveness and limitations of the ILP-solution and
which characteristics graphs hold to perform either better with the ILP-version or with
the ASP-version.

3

3 Preliminaries

3.1 Linear Programming

Linear programming is a technique to minimize linear functions. The following defini-
tion is based on the book [7]

A linear program (LP) problem consists of an linear objective function that is minimized
with respect to a set of linear inequalities.

Linear programs can be expressed as

min{cTx : Ax ≥ b, x ≥ 0}

where b ∈ Rm and c ∈ Rn are constant vectors. The matrix A ∈ Rm×n contains the
coefficients of the m inequalities. We minimize the objective function cTx ∈ R. The
vector inequality Ax ≥ b has to be satisfied for a valid solution. The vector x ∈ Rn

describes possible solutions. If x ∈ Rn satisfies all inequalities it is called a feasible
solution. A solution x∗ is optimal if it respects all inequalities and is minimal.

Integer linear programs (ILPs) are linear programs with the additional restriction
that all variables have to be integers: x ∈ Zn. The decision variant of an ILP is NP-
complete [9].

Each line j of Ax ≥ b can be expressed as the sum
∑n

i=1 aijxi ≥ bj . The objective
function can be expressed as

∑n
i=1 cixi. In this thesis we use this notation as we perceive

it as more readable. Combinatorial optimization problems can be modeled with ILPs.
Every variable xi ∈ {0, 1} denotes a possible decision to include item i ∈ {1, ..., n} in the
solution.

3.2 Definitions

Definition 1 (Neighborhood). Given an undirected graph G = (V,E). Let N(v) denote
the neighborhood of a vertex v. N(v) can formally be described as follows:

w ∈ N(v)⇔ ∃(v, w) ∈ E

Definition 2 (Dominating Set). Given an undirected Graph G = (V,E) a dominating set
is a subset D ⊂ V such that each vertex v ∈ V is either included in the dominating set or
adjacent to at least one vertex which is included in the dominating set. For a dominating
set D the following statement is valid

∀v ∈ V \D : ∃u ∈ D,u ∈ N(v)

Definition 3 (k-Neighborhood). The neighborhood of a single vertex N(v) is defined
above. Let the neighborhood of a set of vertices W ⊂ V be defined as

N(W) :=
⋃
u∈W

N(u)

4 3 PRELIMINARIES

Let k ∈ N. With help of this definition the k-neighborhood Nk(v) of a single vertex v ∈ V
can recursively be defined as:

Nk(v) := N(Nk−1(v)) \ v

whereas N1(v) = N(v). So Nk(v) is a set of all vertices which can be reached with at most
k steps starting from v.

Definition 4 (k-hop Dominating Set). A k-hop dominating set is a subset D ⊂ V such that
for each vertex v ∈ V \ D there exists a path of length l ≤ k between v and at least one
vertex d ∈ D. Thus D is a k-hop dominating set if it satisfies the following requirement:

∀v ∈ V \D : ∃u ∈ D,u ∈ Nk(v)

This means that each vertex is either part of D or in Nk(w) for any w ∈ D.

Definition 5 (connected k-hop Dominating Set). A k-hop dominating set D is a connected
k-hop Dominating Set if the induced subgraph G[D] is connected.

Definition 6 (rooted connected k-hop Dominating Set). Let v ∈ V be the root. A rooted
connected k-hop dominating set D is as connected k-hop dominating set which also in-
cludes v.

(Add a definition for what "connected" means)

5

4 Methods

We represent a plant’s leaf as an undirected graph G = (V,E). Each vertex v represents
a leaf cell whereas a root vroot is predefined. Leaf cells are connected to its neighboring
cells via plasmodesmata. Plasmodesmata are microscopic channels that link plant cells,
enabling transport of nutrients and water amongst of other things . Those connections
are represented by the edges E. We then look for a minimum set of nodes such that the
whole leaf can still be supplied with water and the nutrients can be collected. For this
purpose these vein cells need as well as the root need to be connected. Those cells form
our solution for a rooted connected k-hop dominating set D
(Irgendwie unterbringen, dass die non-vein-Zellen nicht direkt mit den vein-Zellen be-
nachbart sein müssen.)
We use a node based ILP-Formulation to solve this special variant of the dominating
set. We start by introducing a formulation for the general k-hop dominating set. As the
objective function for our special variant remains the same, we then add constraints in a
stepwise manner until we can present an ILP-formulation for the rooted connected k-hop
dominating set.
As our implementation is node based we omit decision variables for edges, and in-
stead only assign a variable xv ∈ {0, 1} for every v ∈ V , with the interpretation
xv = 1⇔ v ∈ DS.

4.1 Minimum Dominating Set

As we try to minimize the number of vertices in the dominating set our ILP is given as:
objective target:

min{
∑
v∈V

xv} (1)

subject to: ∑
w∈N(v)

xw + xv ≥ 1,∀v ∈ V (2)

The family of inequalities (2) says that each vertex itself or at least one of its neighbors
has to be included in the dominating set.

4.2 Minimum k-hop Dominating Set

The objective target for this problem is the same as (1). But the family of inequalities (2)
is not valid for this case. Instead another famility of inequalities is valid:∑

w∈Nk(v)

xw ≥ xv, ∀v ∈ V (3)

This family of inequalities serves to model the requirement that each vertex or at least
one member of the k-neighborhood has to be included in the dominating set. For the
case k = 1 this family is the same as (2).

6 4 METHODS

Figure 1: Illustration of vertex separators. In all three pictures the set of green nodes
separates the blue and the red node. In the middle and on the right picture minimal
separators are illustrated. If one of the green nodes is turned into a black node, the green
set would not separate the blue and the red node anymore.

4.3 Connectivity

To enforce connectivity (using ILP) there are different approaches. As this is not trivial
there have been many publications [1], [8], [2], [3], [17], [6] concerning this issue in the
past years.

4.3.1 Vertex separators

One approach is to use so called vertex separators. In [1] and [8] the authors used this
approach to create ILP based algorithms to solve other graph theoretical optimization
problems which require the solution to be connected. Bomersbach et al. [1] presented an
ILP-formulation to solve the connected maximum coverage problem and Fischetti et al.
[8] proposed ILP-formulations for different variants of the steiner tree problem. (that was
solved in a branch and cut framework?). As [1] refers to [8] in terms of the connectivity
constraints, both ILP-formulations use the same constraints to enforce connectivity. In
[1], the authors compared the runtime of this implementation to previous proposed exact
algorithms and to greedy approaches for the connected maximum coverage problem. In
all test cases this implementation was significantly faster than all other exact algorithms.
While in some cases the greedy algorithm was slightly faster, the proposed algorithm was
more accurate. The algorithm from [8] significantly improved the runtime of an exact
solver for all the different steiner tree problem variants and their proposed implemen-
tation won most of the different categories of the 11th DIMACS challenge on steiner trees.

Let v, w ∈ V . A v-w-separator is a subset Sv,w ⊂ V such that G[V − Sv,w] has no path
between v and w. A minimal v-w-separator Sv,wmin

is a v-w-separator where no vertex
can be removed. That is, Sv,wmin

\ {y} is not a separator for v and w. Let S(v, w) (Use

4.3 Connectivity 7

different notation. This is misleading) denote the family of all minimal v-w-separators.
In [1] and [8] the following family of inequalities is used to enforce connectivity:

xv + xw ≤
∑

u∈Sv,w

xu + 1, ∀v, w ∈ V, v 6= w,∀Sv,w ∈ S(v, w) (4)

This inequalities require that for each combination of two vertices v and w, if both ver-
tices included in the dominating set, at least one vertex from a minimum v-w-separator,
has also to be included.
In contrast to the problem from [1] we have a predefined root node which must be part of
the solution. In [3] the authors introduced ILP-formulations for different problems mo-
tivated by forest planning. The objective of this problems is to find a profit maximizing
harvest schedule, while old-growth-forest patches have to be conserved. Input instances
are given as undirected graphs, with areas of the forest as nodes and edges between adja-
cent areas. There is one particular case where a predefined area is to be preserved plus all
preserved areas need to be connected. This is very similar to our problem i.e. that there is
a predefined root vertex and the requirement that all those vertices, which are included
in the solution, need to be connected. Also minimum vertex separator constraints were
used to enforce connectivity, but if a root node was present only those constraints which
separate the connected component, that includes the root node, and all the other compo-
nents were taken into account. The authors state that rooted inequalities are stronger as
this was commonly noted in the literature on steiner tree problems. For our case we also
only use constraints

xv + xw ≤
∑

u∈Sv,w

xu + 1,∀v, w ∈ V, v 6= w,∀Sv,w ∈ S(v, r) (5)

for minimum vertex separators that include the root node.

The number of all minimum vertex separator constraints is potentially exponential [1].
Therefore in [1], [8] and [3] they treated these constraints as lazy constraints, which means
in particular that none of those constraints are included in the initial model. Instead
iteratively integer solutions are resolved [1], [8]. If such a solution is not connected, in
[1] and [8] minimal vertex separators that separate single components are identified via a
linear time algorithm, while in [3] a classical max-flow min-cut theorem is used to identify
violated constraints.
Our algorithm to identify and add violated constraints is analogous the one from [1] with

8 4 METHODS

the exception that we only search for violated constraints that include the root node.

Algorithm 1: Add violated constraints

1 DS∗ := {v|xv = 1}
2 G′ := G[DS]
3 if G′ is not connected then
4 C := set of all disjunct connected components
5 croot := connected component that contains vroot
6 for all components c in C \ {croot} do
7 v := any node from c
8 s1 := findMinVertexSeparator(G, DS∗, v ∈ c, vroot, croot)
9 s2 := findMinVertexSeparator(G, DS∗, vroot, v ∈ c, c))

10 for all w1 ∈ c do
11 add the following constraint to the model:

∑
s∈s1 xs ≥ xw1 + xvroot − 1

12 end
13 for all w2 ∈ croot do
14 add the following constraint to the model:

∑
s∈s2 xs ≥ xw2 + xv − 1

15 end
16 end
17 end

This algorithm is executed each time an integer solution is resolved (using a branch and
cut framework). Let D∗ be an integer, not necessarily connected, solution. Let C be the
set of all connected components from the graph G′ = G[D∗] and let cr be the component
that contains the root node vr. Then the algorithm detects for all single components
c ∈ C \ {cr} one minimal vertex separator that separates c and the component cr. The
constraints concerning these separators are then added to the model and the cutting plane
procedure continues. It is important to mention that there is in general more than one
minimal vertex separator which separates two arbitrary components. The Algorithm 2
detects exactly one, i.e., the separator, that is closest to the first component. By executing
the Algorithm 2 with every component c ∈ C \ {cr} as first component and cr as second
component and vice versa, we ensure that a minimal vertex separator that is closest to
each of the components is added.

Algorithm 2: findMinVertexSeparator(G, DS∗, v ∈ cv, w, cv)

1 N(cv) := neighbors of nodes of cw in G (Maybe use the formal definition from
methods?)

2 G′ := G with all edges between vertices in cv ∪N(cv) removed
3 Rw := vertices that can be reached from w in G′

4 return N(cv) ∩Rw

The algorithm above detects a minimal vertex separator that separates the node w and
the connected component cv. It is taken from [1] although Bomersbach et al. [1] took it
initially from [8]. With this method the minimal vertex separator is found that is closest
to the component cv. In figure 2 one can see an illustration of the process. Suppose the
red marked nodes are an unconnected solution D∗. The set of blue marked nodes is the
minimal separator that is closest to the connected component on the upper graph while

4.3 Connectivity 9

Figure 2:

the set of green marked nodes is the minimal separator that is closest to the component
containing the root. On the picture in the middle and the right one can see the line 2 of
the algorithm 2. As one can see, after removing all edges between the components and its
neighborhood the blue marked nodes on the middle picture and the green marked nodes
on the right picture are still reachable from the other component. Therefore the algorithm
returns this selection of nodes as minimal vertex separator.

We add an additional constraint to the model to tighten up the feasible region and to
prevent unnecessary iterations.

xv ≤
∑

w∈N(v)

xw,∀v ∈ V \ {vroot} (6)

This constraint demands that for each vertex which is part of the dominating set at least
one of its neighbors is also included. In [1] and [8] this constraint is also part of the
model. As the neighborhood of a single vertex is always a minimal vertex separator that
separates this node from any other vertex outside the neighborhood, this constraint is
valid. We exclude the root node vroot to prevent that for the case of a valid solution that
only contains 1 single vertex another one is added unnecessarily.

4.3.2 Miller-Tucker-Zemlin Constraints

There are also formulations to enforce connectivity that only need a polynomially num-
ber of constraints. These constraints are not added lazily but instead all added initially.
There exist some approaches that are based on the construction of a spanning tree. We
have implemented one of these formulations in the scope of this thesis. This approach
was used in [6] to generate an ILP-formulation for the Minimum Connected Dominat-
ing Set problem. In the scope of the publication four different formulations, all based on
creating a spanning tree, were compared (experimentally). This particular formulation
outperformed all three others on all six input graphs. With increasing size the difference
in the runtime became larger.

10 4 METHODS

In the scope of this thesis we therefore only compared this one with the vertex separator
version.

The Miller Tucker Zemlin constraints were initially introduced to present an ILP-
formulation for the Traveling Salesman Problem with only polynomial many constraints.
Let G = (V,E) be our undirected input graph. We follow the description from [6] by
defining Gd = (V ∪ {n+ 1, n+ 2}, A) as directed graph, whereas A = {(n+ 1, n+ 2)} ∪
{
⋃n

i=1 (n+ 1, i), (n+ 2, i)} ∪ E′ and E′ = {(j, i), (i, j) : i, j ∈ E}. Note that E′ is the bidi-
rected version of E, that means, we add an arc in both directions for every edge in E. Let
n = |V |. We create two additional nodes n+1 and n+2. Additionally we add an arc from
n+1 and from n+2 to every vertex v ∈ V , and we add an arc from n+1 to n+2. The idea
behind the constraints is to create a directed spanning tree Td = (V ∪ n+ 1, n+ 2, Ed) on
Gd, such that vertex n+ 1 is a root and holds an arc (on Td) to every vertex, which is not
part of D and to n+2. While n+2 holds an arc to a node vr within D. All the other nodes
form a tree with root vr.

Let yij∀(i, j) ∈ A be decision variables, that specify whether the arc (i, j) is part of the
spanning tree Td. Let ui ∈ Z+,∀i ∈ V ∪ {n+ 1, n+ 2} be auxiliary variables, that specify
in which step the arc is passed starting from n + 1. Those auxiliary variables eliminate
sub tours as they also do in the Traveling Salesman Problem.

In the following we give a full ILP-formulation for to enforce connectivity via MTZ-
constraints.

∑
i∈V

yn+2,i = 1 (7)

∑
(i,j)∈A

yij = 1, ∀j ∈ V (8)

yn+1,i + yij ≤ 1,∀(i, j) ∈ E′ (9)

(n+ 1) ∗ yi,j + ui − uj + (n− 1) ∗ yji ≤ n,∀(i, j) ∈ E′ (10)

(n+ 1) ∗ yi,j + ui − uj + (n− 1) ∗ yji ≤ n, ∀(i, j) ∈ A \ E′ (11)

yn+1,n+2 = 1 (12)

un+1 = 0 (13)

1 ≤ ui ≤ n+ 1, i ∈ V ∪ {n+ 2} (14)

xi = 1− yn+1,i, ∀i ∈ V (15)

Constraints (7) ensure that there is exactly one root for the dominating set. In our case we
replace this inequality by the following: y : n+ 2, vroot = 1 and yn+2,i = 0,∀i ∈ V \{vroot}.

4.4 Minimum connected k-hop Dominating Set 11

n+ 1 n+ 2

vr DS

Figure 3: Illustration of the principle. The dashed circle outlines the dominating set. All
vertices, that are connected to n+ 1 are not part of the dominating set.

Constraints (8) enforce that each node on the spanning tree Td has exactly one incoming
arc. While constraints (9) require that all the nodes from Td are either connected to each
other or have an incoming arc from node n + 1, the node which marks nodes that are
not part of D. With the exception of the term (n − 1)yji the constraints (10) and (11) are
the original MTZ constraints to eliminate sub tours from [12]. The mentioned term is an
improvement from [5]. Constraint (12) demands the arc (n + 1, n + 2) to be included in
Td. Constraints (14) define the value of ranges for the auxiliary variables ui. As these
variables specify in which step the arc to node i is passed, only values from 1 - n+ 1 (the
number of incoming arcs) can be assigned to it. Finally the last constraints (15) ensure
that if there is no incoming arc from node n+ 1 to a node i, then i must be included in D
and vice versa (I think it is important to mention the backward direction as otherwise the
impression could arise that only the MTZ constraints decide which vertices are included).

We combine the above mentioned ILP-formulation for MkCDS with this formulation to
enforce connectivity. The solution of this formulation then is a optimal connected solu-
tion with v ∈ D ⇔ xv = 1. As previously mentioned this formulation only needs polyno-
mial many constraints. More precisely there are (|V |+2)+(2|E|+2|V |+1) = O(|E|+|V |)
decision variables and 1 + |V | + 2|E| + 2|E| + (2|V | + 1) + 1 + 1 + |V | = O(|E| + |V |)
constraints.

4.4 Minimum connected k-hop Dominating Set

A connected k-hop dominating set is a k-hop dominating set DS such that G[DS] is con-
nected.(Maybe refer to methods as this is redundant?). Its ILP-Formulation consists of
the objective target (1) and constraints (3) and a collection of constraints to induce con-
nectivity(In the future different types of potential constraints should be added).

12 4 METHODS

4.5 Minimum rooted connected k-hop Dominating Set

Let vroot ∈ V be the predefined root.The ILP-Model of this problem is the ILP-Model of
4.4 enriched with following constraint.

xvroot ≥ 1 (16)

4.6 Additional methods to tighten up the space of feasible solutions

In the scope of this thesis additional constraints were tested, that should tighten up the
space of feasible solutions further. As it can potentially cost much time to create uncon-
nected solutions, we want to prevent unnecessary iterations.

4.6.1 Intermediate node constraint

In the paper about the Steiner Tree Problem [8] one inequality to reduce the number of
unconnected feasible solutions is proposed. It demands that for each node in the solution,
which is not a predefined terminal, to have two neighbors in the solution. A node that
has two neighbors in the solution can be seen as an intermediate node. Let T be the set
of all terminals. The inequality can formally be described as

2 ∗ xv ≤
∑

w∈N(v)

xv, ∀v ∈ T

Unfortunately this inequality can not be applied to our problem without potentially ex-
cluding optimal solutions. By this inequality solutions can be generated, which have
additional nodes at the end of branches, that are not necessary for the MkCDS but that
are necessary to fulfill this inequality. In our case we would need to require that for each
vertex, which is not at the end of a branch, this inequality needs to be satisfied. But we
can not decide which node will be at the end of a branch in advance.

In figure (4) there is an illustration that compares one optimal solution without this con-
straint on the left and one with this constraint on the right. On the right hand side the
end of a branch is circled to outline the additional node generated by this constraint.

Even if the generated solutions are not inevitably optimal, the generated solutions are
close to an optimal solution (in terms of the number of nodes). At the same time this
constraint reduces the runtime in many instances drastically. That is why it can be con-
sidered to generate approximative solutions using this constraint. This constraint can
also be used to generate a sufficient upper bound in the branch and cut process. But for
the most instances this is not necessary as a sufficient upper bound is found quickly. It
needs much more time to find a sufficient lower bound and to close the gap.

4.6.2 Reduce path length

To exclude such solutions which contain single (unconnected) nodes, that are close to the
rim we invented constraints to reduce the length of each path between the nodes of a

4.6 Additional methods to tighten up the space of feasible solutions 13

with intermediate node constraint

|D| = 22 |D| = 23

Figure 4: The dashed circle outlines the necessity to have connected triplets at the end of
a branch

solution and the root node. The length of each path to an arbitrary node is naturally lim-
ited by the number of members of the dominating set. In the extreme there is one single
branch, which has exactly the length of the number of all members of the dominating
set. In the case of more than one branch the upper bound is still valid. On that account
we started by following the naive approach to limit the path from the root node to each
member of D by the size of D. The formal description is∑

v∈V
xv ≥ shortestpath{vroot, v},∀v ∈ V \ {vroot} (17)

As this constraint did not reduce the runtime we tried to refine it. There are too many
possible (unconnected) solutions where the constraint is satisfied. Figure 5 shows one of
it.

This circumstance leads to the following constraint, that makes use of the Gaussian sum
formula. The idea is still to limit the distance between the root node vroot and all the
members of D. In this advanced formulation we limit the sum of the distances to

∑|D∗|
i i.

This constraint cuts off unconnected solutions that are valid using only the previous con-
straint (??). But as our tests revealed this constraint did not generate a performance boost
but even increased the runtime(As it probably adds too much complexity to the model).

(Maybe also mention that this constraint in isolation allows solutions which are forbidden
using the previous one)

4.6.3 Preventively adding separators

We use the lazy approach to prevent that too many constraints are added that are not
mandatory to generate sufficient solutions. In despite of this we evaluated if adding par-
ticular separator constraints could reduce the runtime. It can be that a more appropriate
LP bound is generated using this approach and unnecessary iterations can be prevented.

14 5 IMPLEMENTATION

|D∗| = 4

Figure 5: An unconnected solution where the path length constraint is satisfied.

5 Implementation

Now, we specify the implementation of the ILP-formulations from the Methods section.
We implemented the ILP-formulations and Algorithms 1 and 2 using Python version
3.7.5. As branch and cut framework and MIP-solver we use Gurobi version 9.0.2. Gurobi
offers a Python interface called gurobipy which can be called from inside python scripts.
This interface offers access to functions included in Gurobi. Our implementation is em-
bedded in a conda package. The package is called k_ hop_ dominating_ set_ gurobi. The
source of the package can be found on https://gitlab.cs.uni-duesseldorf.de/
albi/albi-students/bachelor-mario-surlemont/. The package itself can be
build via

conda build .

after heading into the directory. To build the package conda-build needs to be installed.

Afterwards the package can be installed via

conda i n s t a l l −−use−l o c a l k_hop_dominating_set_gurobi

It holds the dependencies networkX, matplotlib.pyplot and gurobipy.

The vertex separator constraints as well as the MTZ constraints can be chosen. The choice
can be specified via the optional argument -mtz, for the use of MTZ-constraints. By de-
fault the vertex separators are chosen. If required the additional constraints that have
been presented in the method section can also be added to the model via the optional ar-
gument -imn| -rpl| -gaus| -pre with rpl as abbreviation for the naive constraint to reduce
the path length and gaus as abbreviation for the constraint involing the gaussian sum
formula. The argument -pre adds separators to the model before the solution process is
started. When the intermediate node constraint is added via -imn the generated solutions
might not be optimal anymore.

As input networkx graphs stored as “.graphml” or “.gml” can be used. Also “.lp” files

https://gitlab.cs.uni-duesseldorf.de/albi/albi-students/bachelor-mario-surlemont/
https://gitlab.cs.uni-duesseldorf.de/albi/albi-students/bachelor-mario-surlemont/

15

from [10] can be used. A full programm call is

k_hop_dominating_set_gurobi −g graph . graphml −k k [OPTIONS]

with [OPTIONS] = {-mtz, -inm, -rpl, -gaus, -pre}.
If the vertex separators are chosen to induce connectivity a lazy approach is used. Gurobi
offers a callback function which is called during the solution procedure when different
events occur. The function offers a code that communicates the type of the occured event.
When the callback code MIPSOLVE is communicated a mixed ILP-solution was gener-
ated. That is a solution where those variables that must be integers are integers while
those variables which do not need to be intergers can be arbitrarily chosen (with respect
to the inequalities). As we only have integer variables in our model the MIPSOLVE code
tells us that an integer solution D∗ was generated. In this case we check whether the
graph is connected. We use a function that is included in networkx to check if the graph
G[D∗] is connected. If not, algorithm 1 is used to add the corresponding constraints. After
a valid solution was found the inputgraph it is plottet via matplotlib.plt. The members of
the dominating set are displayed in red while all the other vertices are displayed green.
The console output shows information about the solving process and the solution. Such
as the current upper bound and lower bound.

6 Results

This section shows our results of the runtime for the Minimum Connected rooted k-hop
Dominating Set problem. We test the graphs that represent plant leafs from [10] as well
as randomly generated graphs and grid graphs. At first we briefly describe the graphs
from [10] and our other test graphs. A more detailed description of the leaf graphs can
be taken from [10]. All tests have been performed using a notebook with an Intel Core
i7-4720HQ CPU @ 2.60GHz x 8 and 8 GB of RAM under Ubuntu 18.04.14 LTS and in all
test cases we only looked for one single optimal solution.

As leaf graphs we use the instances small-leaf, middle-leaf, bigger-leaf, maple and asymmetric.
The instances small-leaf, middle-leaf and bigger-leaf are similar in their structure. Each of
the three graphs has the root at the bottom side and a symmetrical composition. They
only differ in the number of nodes. The smallest graph small-leaf has only 15 nodes while
middle-leaf has 62 nodes and bigger-leaf has 71 nodes. While maple represents a maple’s
leaf having 118 nodes, asymmetric is inspired by an alocasia leaf. The peculiarity here is
that it has the root in the middle of the leaf. It has 378 nodes.

The following figure illustrates the 5 different leaf graphs.

16 6 RESULTS

Bigger Leaf

Middle Leaf

Small Leaf

Maple

Asymmetric

Figure 6: The graphs that represent plant leafs

First of all we introduce a table demonstrating different characteristics of the leaf graphs.
The first two columns show the size of the graph, i.e., the number of nodes and edges.
The density is shown in the third column. It is a measure that indicates the relative
amount of the number of edges a graph has to the theoretical number a graph can have.
Additionally the maximal, the average and the minimal node degree is shown. These
parameters imply if a graph has at least one node with a much higher degree than the
average or if the degrees are equally distributed.

17

name |V| |E| density max.
degree

avg
degree

median
degree

min
degree

small-leaf 15 30 0.29 6 4 4 1
middle-leaf 62 152 0.08 6 5 6 1
bigger-leaf 71 182 0.07 6 5 6 1
maple 118 308 0.04 7 5 6 1
asymmetric 378 1071 0.02 8 6 6 3

Table 1: The characteristics of the leaf graphs

We then continue with the runtime of our ILP-implementation using the leaf graphs as
input. The following tables present the runtime in seconds as well as the number of
constraints that were lazily added in the solution process. The last column shows the size
of an optimal solution, i.e., the number of nodes that form a minimum dominating set.
For the case that the solution process took more than 1000 seconds we state the upper
bound and the lower bound that were determined within this time. The upper bound
specifies the smallest solution that was found until the time was over. This means that
an optimal solution will not be larger than the upper bound. In contrast the lower bound
gives the smallest theoretical possible size of an optimal solution to that time. Let U be
an upper bound and L be an lower bound. In the column optimal we used the denotion
[U,L].

name k # lazily added constraints runtime(s) optimal
small-leaf 1 9 0.01237 6

2 4 0.007257 3
3 0 0.007005 2

middle-leaf 1 4945 1099.324462 [22,21]
2 2043 7.006414 14
3 811 0.950746 10

bigger-leaf 1 6726 1058.414758 [25, 22]
2 377 18.178422 15
3 1266 2.606486 11

maple 1 194321 1129.807776 [41,31]
2 9621 1074.40126 [26,20]
3 8029 1532.499756 [20,17]

asymmetric 1 34255 1010.642396 [219, 80]
2 2706 1065.584708 [161,38]
3 13947 1026.665897 [63, 22]

Table 2: Minimum Connected rooted k-hop Dominating Set Results on the leaf graphs

With increasing parameter k the runtime decreases significantly. Additionally this ta-
ble indicates a relation between the number of constraints that are added lazily and the
runtime. Besides some outliers it seems like a high number of lazily added constraints
implies a higher runtime. The more constraints that are added the more frequent uncon-
nected integer solutions are found in the solution process. This effect occurs especially
on input instances that have many symmetrical solutions which are unconnected. If the

18 6 RESULTS

input graph only has nodes that have a degree close to the average degree, then more
likely this instance has many different symmetrical solutions. In such instances there is
no node that is so valuable that it has to be included in the solution. If an unconnected
integer solution is generated violated constraints are added to the model. After adding
these constraints it most likely is cheaper to swap the nodes and use nodes where no vi-
olated constraints have been added yet than to use the same nodes and add those nodes,
that the added constraints demand. On graphs where some nodes exist that have a sig-
nificant higher degree than the average adding constraints more likely will not exclude
them from a solution as they cover to many other vertices. This effect is roughly indi-
cated by the number of lazily added constraints. If only a few constraints were added
then there probably will not have been many options to swap valuable nodes without
creating to many costs.

With increasing size, i.e., number of nodes a graph has, the density of our graphs de-
creases. The density of the graph is another indicator that roughly implies the runtime
[2]. Especially on graphs with unequal distribution of node degrees. As with increasing
size the density decreases on our graphs, the tests can not clearly indicate if the size is
purely responsible for the runtime or if the density also has an influence. In the following
we will test random generated graphs that have different size and for each size 10 differ-
ent levels of density. On this graphs the density clearly is the determining factor for the
runtime.

The next table shows the characteristics of the random graphs.

19

name |V| |E| density max.
degree

avg.
degree

median
degree

min
degree

GNM_ 50_ 122 50 122 0.1 9 5 5 1
GNM_ 50_ 245 50 245 0.2 15 10 9.5 6
GNM_ 50_ 368 50 368 0.3 22 15 15 7
GNM_ 50_ 490 50 490 0.4 28 20 19 13
GNM_ 50_ 612 50 612 0.5 35 24 24 17
GNM_ 50_ 735 50 735 0.6 36 29 30 17
GNM_ 50_ 858 50 858 0.7 41 34 34.5 28
GNM_ 50_ 980 50 980 0.8 44 39 39 34
GNM_ 50_ 1102 50 1102 0.9 49 44 44 38
GNM_ 50_ 1225 50 1225 1.0 49 49 49 49
GNM_ 100_ 495 100 495 0.1 17 10 10 1
GNM_ 100_ 990 100 990 0.2 29 20 19.5 8
GNM_ 100_ 1485 100 1485 0.3 40 30 29 21
GNM_ 100_ 1980 100 1980 0.4 51 40 40 26
GNM_ 100_ 2475 100 2475 0.5 62 50 50 35
GNM_ 100_ 2970 100 2970 0.6 70 59 60 48
GNM_ 100_ 3465 100 3465 0.7 80 69 69 56
GNM_ 100_ 3960 100 3960 0.8 88 79 80 70
GNM_ 100_ 4455 100 4455 0.9 95 89 89 83
GNM_ 100_ 4950 100 4950 1.0 99 99 99 9
GNM_ 250_ 3112 250 3112 0.1 38 25 24.5 14
GNM_ 250_ 6225 250 6225 0.2 67 50 49.5 28
GNM_ 250_ 9338 250 9338 0.3 91 75 75 51
GNM_ 250_ 12450 250 12450 0.4 119 100 100 82
GNM_ 250_ 15562 250 15562 0.5 144 124 124 109
GNM_ 250_ 18675 250 18675 0.6 173 149 150 131
GNM_ 250_ 21788 250 21788 0.7 195 174 174 156
GNM_ 250_ 24900 250 24900 0.8 216 199 199 180
GNM_ 250_ 28012 250 28012 0.9 236 224 224 210
GNM_ 250_ 31125 250 31125 1.0 249 249 249 249
GNM_ 500_ 12475 500 12475 0.1 68 50 50 30
GNM_ 500_ 24950 500 24950 0.2 128 100 100 68
GNM_ 500_ 37425 500 37425 0.3 183 150 150 118
GNM_ 500_ 49900 500 49900 0.4 243 200 200 166
GNM_ 500_ 62375 500 62375 0.5 286 250 250 207
GNM_ 500_ 74850 500 74850 0.6 328 299 299 266
GNM_ 500_ 87325 500 87325 0.7 380 349 350 318
GNM_ 500_ 99800 500 99800 0.8 427 399 399 372
GNM_ 500_ 112275 500 112275 0.9 467 449 450 427
GNM_ 500_ 124750 500 124750 1.0 499 499 499 499

Table 3: The characteristics of the random graphs

We have random graphs of four levels of size(|V| = 50; 100; 250; 500). For each of these
levels we have ten levels of density(0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0) to explore

20 6 RESULTS

particularly its influence on the runtime. In the following table we only present the results
for the density levels 0.1, 0.5 and 0.9 . The appendix contains the complete tables. The
results clearly show that, despite the larger size of the random graphs, the runtime is
significantly shorter than on the leaf graphs. The density here seems to be a reasonable
parameter that implies the runtime. On dense graphs few nodes are mandatory to form
a dominating set. This allows to find an optimal solution faster.

name k # lazily added constraints runtime(s) optimal
GNM_ 50_ 122 1 66 0.034878 11
GNM_ 50_ 122 2 67 11 0.03795
GNM_ 50_ 122 3 0 2 0.01651
GNM_ 50_ 612 1 0 0.017783 4
GNM_ 50_ 612 2 0 1 0.002223
GNM_ 50_ 612 3 0 1 0.002541
GNM_ 50_ 1102 1 3 0.019566 3
GNM_ 50_ 1102 2 0 1 0.012025
GNM_ 50_ 1102 3 0 1 0.012196
GNM_ 100_ 495 1 113 0.376731 14
GNM_ 100_ 495 2 6 4 0.108993
GNM_ 100_ 495 3 0 1 0.026969
GNM_ 100_ 2475 1 0 0.045136 4
GNM_ 100_ 2475 2 0 1 0.004791
GNM_ 100_ 2475 3 0 1 0.006448
GNM_ 100_ 4455 1 0 0.00505 2
GNM_ 100_ 4455 2 0 1 0.003927
GNM_ 100_ 4455 3 0 1 0.004094
GNM_ 250_ 3112 1 0 1017.303471 [17;15]
GNM_ 250_ 3112 2 0 2 0.270981
GNM_ 250_ 3112 3 14 1 0.141794
GNM_ 250_ 15562 1 0 12.29 5
GNM_ 250_ 15562 2 109 1 0.257635
GNM_ 250_ 15562 3 109 1 0.267159
GNM_ 250_ 28012 1 0 0.024473 2
GNM_ 250_ 28012 2 0 1 0.018999
GNM_ 250_ 28012 3 0 1 0.023179
GNM_ 500_ 12475 1 42 1004.920676 [21;13]
GNM_ 500_ 12475 2 0 2 1.123904
GNM_ 500_ 12475 3 0 1 0.634489
GNM_ 500_ 62375 1 0 178.495614 5
GNM_ 500_ 62375 2 0 1 0.29011
GNM_ 500_ 62375 3 0 1 0.544754
GNM_ 500_ 112275 1 0 0.189313 2
GNM_ 500_ 112275 2 0 1 0.148031
GNM_ 500_ 112275 3 0 1 0.205316

Table 4: Minimum Connected rooted k-hop Dominating Set Results on the random
graphs

21

We also tested another class of graphs on their runtime. The structure of our leaf graphs
is similar in the manner that all have a fixed neighborhood of 6 vertices, all are planar
and almost all nodes have the same degree. Many grid graphs also have all these charac-
teristics. This is why we tested our implementation also on grid graphs. Here we tested
graphs that are quadratic as well as graphs that are more oblong. Especially on quadratic
graphs the same behavior like on the leaf graphs has occurred. Here also comparatively
many constraints were added lazily. Which indicates that here also many unconnected
integer solutions were created. It seems like the “gridness” of a graph a the crucial fac-
tor that pushs the runtime over a reasonable extent. The gridness can be defined as the
combination of the three described properties from the beginning. On grid graphs the
ASP-version also performs much better than the ILP-Version.

Here also a short overview about the characteristics of the grid graphs.

name |V| |E| density max. degree avg degree median degree min degree
GRID_ 6_ 4 24 38 0.14 4 3 3 2
GRID_ 8_ 8 64 112 0.06 4 4 4 2
GRID_ 16_ 4 64 108 0.05 4 3 3 2
GRID_ 18_ 2 36 52 0.08 3 3 3 2
GRID_ 32_ 2 64 94 0.05 3 3 3 2

Table 5: The characteristics of the grid graphs

name k # lazily added constraints runtime(s) optimal
GRID_ 6_ 4 1 178 0.054271 11
GRID_ 6_ 4 2 74 0.044738 7
GRID_ 6_ 4 3 112 0.05603 6
GRID_ 8_ 8 1 6451 774.59 26
GRID_ 8_ 8 2 865 81.970768 18
GRID_ 8_ 8 3 3634 15.546363 15
GRID_ 16_ 4 1 31 42.568463 28
GRID_ 16_ 4 2 2353 1.405127 17
GRID_ 16_ 4 3 2789 7.9726 16
GRID_ 18_ 2 1 383 0.116538 18
GRID_ 18_ 2 2 394 0.147668 17
GRID_ 18_ 2 3 319 0.17269 16
GRID_ 32_ 2 1 1090 0.261853 32
GRID_ 32_ 2 2 791 0.341931 31
GRID_ 32_ 2 3 876 0.286863 30

Table 6: Minimum Connected rooted k-hop Dominating Set Results on the grid graphs

Another important factor that comes with a long runtime for the ILP-version is when
there is a large gap between the number of an unconnected solution and the number of
a connected solution for an instance. The other way round the ILP-version performed
good on graphs were the gap was tight such that only a few nodes needed to be added
to an unconnected solution.

22 6 RESULTS

In the method section (refer at this place) we introduced the MTZ constraints (also refer)
to induce connectivity. The next table shows the runtime of three graphs using the MTZ
constraints.

name k runtime(s) optimal
GRID_ 8_ 8 2 61.264993 18
middle-leaf 2 1229.65 [14;13]
bigger-leaf 3 197.451639 11

Table 7: Minimum Connected rooted k-hop Dominating Set Results using the MTZ con-
straints

The version using the vertex separator is in all testes cases many times faster. The version
using the MTZ constraints seems not to be a reasonable alternative.

Now we study the case when some of the vertex separator constraints are preadded to the
model. We preadded for all combinations cv of a vertex v and its neighborhood N(v)the
vertex separators that separate cv and the root vertex vr. As the following table reveals
this generates a significant speedup to the runtime. However the bigger leaf instance
can still not be solved optimal under 1000 seconds. In all test cases the ILP-version with
preadded separators performed better than the ASP-version. Still many separator con-
straints needed to be added lazily. If these constraints can be identified in advance this
could generate another speedup. At this point preadding the described separators itself
does not improve the ILP-implementation in a manner that the runtime is satisfying.

name k # lazily added constraints runtime(s) optimal
small-leaf 1 0 0.003599 6
s middle-leaf 1 3699 710.18652 22
bigger-leaf 1 7105 1080.973378 [25, 23]
GRID_ 8_ 8 1 1061 40.536663 26
GRID_ 16_ 4 1 57 27.854317 28

Table 8: Minimum Connected rooted k-hop Dominating Set Results with preadded vertex
separator constraints

At last we present tables that show the effect of the additional constraints (referenz) in-
troduced in the method section(ref) on some graphs.

The first table shows the effect of the intermediate node constraint(ref) from [8]. To recap
this constraint demands that every vertex that is part of the dominating set needs at
least two neighbors which are also members of the dominating set. Roughly speaking
every node of the dominating set(except for the root) needs to be an intermediate node.
This constraint reduces the runtime drastically. However in most cases including this
constraint adds nodes to the solution that would not be included without. For example
the instances middle-leaf and bigger-leaf have one extra node in the optimal solution when
this constraint is included.

23

name k # lazily added constraints runtime(s) optimal
small-leaf 1 8 0.011553 6
middle-leaf 1 643 0.723175 23
bigger-leaf 1 1157 1.396552 25
maple 1 1405 439.99668 41
asymmetric 1 4294 1006.370245 [256, 62]

Table 9: Minimum Connected rooted k-hop Dominating Set Results with IMN constraint

The next table shows the results using the naive constraint to reduce the path length
from the root to members of the dominating set. It does not reduce the runtime but even
increases it. For the cases were we stopped the solution process after a fixed time span
the upper bounds and lower bounds are worse than without this constraint. However
in some cases this constraint reduces the number of lazily added constraints which is an
indicator that the room of possible unconnected solutions was reduced. But this effect did
not reduce the runtime. Probably this constraint added complexity to the model which
increased the runtime instead.

name k # lazily added constraints runtime(s) optimal
small-leaf 2 9 0.008948 3
middle-leaf 2 109 10.936048 14
bigger-leaf 2 67 23.457956 15
maple 2 5804 1011.766479 [26,20]
asymmetric 2 17391 1114.582689 [190,81]

Table 10: Minimum Connected rooted k-hop Dominating Set Results with SPL constraint

The additional constraint that uses the Gaussian sum formula even performed drasti-
cally worse. The runtime increased significantly as this constraints adds a high degree of
complexity to the model.

name k # lazily added constraints runtime(s) optimal
small-leaf 2 8 0.009487 3
middle-leaf 2 457 87.4349 14
bigger-leaf 2 1566 317.235052 15

Table 11: Minimum Connected rooted k-hop Dominating Set Results with GAUS con-
straint

When using both constraints in conjunction the constraint with the Gaussian sum for-
mula dominates the runtime.

24 6 RESULTS

name k # lazily added constraints runtime(s) optimal
small-leaf 2 0 0.004869 3
middle-leaf 2 1198 87.231026 14
bigger-leaf 2 882 317.309151 15

Table 12: Minimum Connected rooted k-hop Dominating Set Results with SPL and GAUS
constraint

As we compared our ILP-version to the ASP-version from [10] the following tables list
the runtime of the different graphs using the ASP-version.

We start with our leaf graphs. This table clearly shows that the ASP-version performs
much better on these graphs. As for example for the middle-leaf instance with parameter
k = 1 the ASP-version finds a solution in 154 seconds, after 1100 seconds the ILP-version
does not find a solution(ref).

name k # lazily added constraints runtime(s) optimal
small-leaf 1 9 0.008 6
small-leaf 2 4 0.009 3
small-leaf 3 0 0.009 2
middle-leaf 1 4945 153.605 22
middle-leaf 2 2043 0.597 14
middle-leaf 3 811 0.038 10
bigger-leaf 1 6726 1002.022 [25, 24]
bigger-leaf 2 377 1.735 15
bigger-leaf 3 1266 0.069 11
maple 1 194321 1129.807776 [41,31]
maple 2 9621 1008.548 [26,24]
maple 3 8029 1006.839 [21,20]
asymmetric 1 34255 1011.016 [164, 29]
asymmetric 2 2706 1009.839 [102,20]
asymmetric 3 34255 1012.392 [69, 18]

Table 13: Minimum Connected rooted k-hop Dominating Set Results on the leaf graphs
using ASP

We continue with the runtime of the ASP-version on random graphs. This tables clearly
indicate that the ILP-version performs better on random graphs.

25

name k runtime(s) optimal
GNM_ 50_ 122 1 0.014 11
GNM_ 50_ 122 2 5 0.025
GNM_ 50_ 122 3 2 0.022
GNM_ 50_ 612 1 0.055 4
GNM_ 50_ 612 2 1 0.038
GNM_ 50_ 612 3 1 0.041
GNM_ 50_ 1102 1 0.052 3
GNM_ 50_ 1102 2 1 0.052
GNM_ 50_ 1102 3 1 0.051
GNM_ 100_ 495 1 32.451 14
GNM_ 100_ 495 2 4 0.084
GNM_ 100_ 495 3 1 0.082
GNM_ 100_ 2475 1 0.655 4
GNM_ 100_ 2475 2 1 0.151
GNM_ 100_ 2475 3 1 0.163
GNM_ 100_ 4455 1 0.253 2
GNM_ 100_ 4455 2 1 0.220
GNM_ 100_ 4455 3 1 0.227
GNM_ 250_ 3112 1 1017.204 [23;9]
GNM_ 250_ 3112 2 2 0.521
GNM_ 250_ 3112 3 1 0.529
GNM_ 250_ 15562 1 1008.099 [5;4]
GNM_ 250_ 15562 2 1 0.972
GNM_ 250_ 15562 3 1 0.967
GNM_ 250_ 28012 1 3.400 2
GNM_ 250_ 28012 2 1 1.453
GNM_ 250_ 28012 3 1 1.489
GNM_ 500_ 12475 1 1016.396 [29;7]
GNM_ 500_ 12475 2 2 2.314
GNM_ 500_ 12475 3 1 2.297
GNM_ 500_ 62375 1 1006.141 [6;4]
GNM_ 500_ 62375 2 1 4.218
GNM_ 500_ 62375 3 1 4.513
GNM_ 500_ 112275 1 8.705 2
GNM_ 500_ 112275 2 1 6.268
GNM_ 500_ 112275 3 1 6.490

Table 14: Minimum Connected rooted k-hop Dominating Set Results on the random
graphs using ASP

On the other hand the ASP-version performs better on the grid graphs. This is as we
expected.

26 6 RESULTS

name k runtime(s) optimal
GRID_ 6_ 4 1 0.009 11
GRID_ 6_ 4 2 0.011 7
GRID_ 6_ 4 3 0.013 6
GRID_ 8_ 8 1 92.739 26
GRID_ 8_ 8 2 1.534 18
GRID_ 8_ 8 3 1.747 15
GRID_ 16_ 4 1 0.281 28
GRID_ 16_ 4 2 0.014 17
GRID_ 16_ 4 3 0.023 16
GRID_ 18_ 2 1 0.010 18
GRID_ 18_ 2 2 0.011 17
GRID_ 18_ 2 3 0.013 16
GRID_ 32_ 2 1 0.015 32
GRID_ 32_ 2 2 0.015 31
GRID_ 32_ 2 3 0.023 30

Table 15: Minimum Connected rooted k-hop Dominating Set Results on the grid graphs
using ASP

At very last we want to have a deeper look into one particular aspect. During the solution
process upper and lower bounds are determined. Most of the time the ILP-version is
capable of finding a solid upper bound quickly. The vast majority of the time needed
to find an optimal solution is spent on closing the gap to the lower bound. To illustrate
this the next table shows after what time an upper bound that is 20%, 10%, 5% and 0%
different from an optimal solution is found. In the cases were the ASP-version performs
better it also founds a proper upper bound faster. In the one case where the ILP-version
performs better it finds an appropriate upper bound faster.

name type k 20% 10% 5% 0% time
to

close
the
gap

#
lazily
added
con-

straints

runtime(s) optimal

middle-leaf ILP 1 0s 0s 0s 0s 1099s 4945 1099.324462 [22,21]
middle-leaf ASP 1 0s 0s 0s 0s 154s - 153.605 22
bigger-leaf ILP 1 1s 4s 4s 14s 1044s 6726 1058.414758 [25, 22]
bigger-leaf ASP 1 0s 2s 5s 5s 997s - 1002.022 [25, 24]
GNM_ 250_ 6225 ILP 1 0s 0s 6s 6s 894s 0 900.64 10
GNM_ 250_ 6225 ASP 1 238s - - - - - - 10
GRID_ 8_ 8 ILP 1 0s 2s 5s 599s 175s 6451 774.59 26
GRID_ 8_ 8 ASP 1 0s 0s 0s 11s 81s - 92.739 26

Table 16: Time that is necessary to find appropriate upper bounds

27

7 Discussion

As already mentioned and as Hyunh [10] stated our model has some shortcomings and
disregards aspects that influence an optimal venation pattern in real plants. We only fo-
cus on minimizing the number of cells that have to be transformed into vein cells, under
the condition that the entire leaf can still be supplied with water and nutrients. Doing
so the number of photo synthetic active cells and their outcome should be maximized.
Our model completely disregards the vein hierarchy and among other things that envi-
ronmental circumstances also influence the venation pattern [16]. The fact that plants try
to minimize their total branch length and the transport distance for nutrients [4] is also
disregarded.

As our results revealed/ showed the neither the ILP implementation nor the ASP imple-
mentation are capable of generating solutions for our leaf graphs in a reasonable amount
of time. The ILP implementation is incapable of finding an optimal solution in under
1000 seconds for the instance middle-leaf, having only 62 nodes, with parameter k = 1.
The ASP implementation on the other hand needed only 154 seconds to find an optimal
solution. However both version find an appropriate upper bound in less than 1 second.
The rest of the solving time is entirely used to close the gap from the lower bound. The
instance GNM_ 500_ 62375 on the contrary has 500 nodes but the ILP implementation
nevertheless finds a solution in 154 seconds, whereas the ASP version could not find an
optimal solution after 1000 seconds. As the results show the same difference in runtime
on other rather spare and large random graphs the ILP version seems to perform better
on random graphs in general. As the results for the random graphs indicated our ILP
implementation might be a reasonable approach applied to other problems which can
be modeled with the Minimum Connected (rooted) k-hop Dominating Set depending on the
structure of the input instances.

As well as Hyunh [10] made the observation for the ASP implementation that an increas-
ing parameter k reduces the runtime significantly our tests showed the same effect using
the ILP implementation. For the random graphs and parameter k = 2 or k = 3 every
instance could be solved in less than 1 second. It should also be noted that for most of the
instances in this case only a few or even none constraints needed to be added lazily. Op-
timal solutions consisted in this case for the most instances only of the single root node
or contained also a few additional nodes. These results can not unconditionally applied
to other real world problems as their graphs can have specific structures that differ from
random graphs. Also on our leaf graphs an increasing k implied a better runtime. How-
ever in the case of k = 2 and k = 3 the instances maple and asymmetric could not be solved
under 1000 seconds. We can not simply arbitrarily increase the parameter k in our model
as vein cells must be in a range of 2-3 cells from mesophyl cells [13, p. 469]. The runtime
of the grid graphs also went down with increased k. For this graphs even with k = 1 an
optimal solution could be found in under 1000 seconds. Admittedly all instances only
had 64 nodes. As for the instance GRID_ 8_ 8 the time to find an optimal solution was
775 seconds it can be assumed that for larger instances the runtime exceeds 1000 seconds.

Using the intermediate node constraints reduced the runtime the most. However in the
most cases this constraints added unnecessary nodes to a solution which are not included
without using this constraint. Nonetheless it could be considered to use this method to

28 7 DISCUSSION

create approximative solutions. But for this purpose it would be desirable to formally
prove the maximal amount of extra nodes in relation to an optimal solution. However
our results show, at least exemplarily, that in most cases even without this additional con-
straint in rather short time appropriate upper bounds were established. For the instance
middle-leaf for example the ILP implementation as well as the ASP implementation found
an upper bound in less than 1 second that does not differ from an optimal solution. Thus
an approximation for the upper bound does not seem to be necessary. In fact a heuristic
that generates an appropriate lower bound is much more desirable as closing the gap to
the upper bound takes the major amount of time. Even for the rather large instance maple
an upper bound that does not differ from the optimal solution using the intermediate node
constraint is found after 29 seconds. At best this constraint could be used to evaluate how
good upper bounds from the solving process are. But for this purpose an approximation
factor would be necessary. For the asymmetric an optimal solution could not be found
under 1000 seconds even using this constraint. According to this there is still need for
optimization to create a satisfying implementation even if this constraint is used.

According to the current information using vertex separators seem to be the best method
to induce connectivity on graph theoretical problems. Alternative approaches from [6] or
[11] were not as succesfull for the corresponding problems in comparison to formulations
that use vertex separators. Especially for the steiner tree problem Fischetti et al. [8] could
achieve good results compared to other approaches. Also Bomersbach et al. [1] could
achieve good results for the Connected Maximum Coverage Problem. In [3] and [2] this
method was evaluated as promising. For our problem and especially for the graphs that
represent our leafs this method was not satisfying. The same applies to quadratical grid
graphs. We assume the high number of unconnected integer solutions that are generated
in the iteration process as beeing crucial. These solutions are most likely in some man-
ner symmetrical such that an appropriate symmetry breaker could reduce the runtime
drastically.

In general the ASP implementation performed better on our graphs representing the
leafs. Hyunh [10] mentioned different aspects in the conclusion of her thesis how the
ASP implementation can be improved. As this implementation performed better than
the ILP implementation so far it might be more reasonable to improve the ASP imple-
mentation rather than the ILP.

Another aspect that our tests revealed is that especially on such instance where there is
a rather large gap between the size of an optimal unconnected solution and an optimal
connected solution the runtime is relatively high. This is probably related to the fact that
in such cases many constraints were added lazily, which indicates that there is a high
amount of unconnected integer solutions. For the instances where the gap was rather
tight the runtime was much better. In the tests from [10] an ILP implementation for the
unconnected Minimum k-hop Dominating Set could create solutions much faster than
the ASP implementation. This specific superiority is reflected here such that quickly valid
solutions could be generated and it only needs to be verified if the solution is connected
and otherwise only a few constraints needed to be added.

The density has also shown as a parameter which highly influences the runtime. On
sparse graphs both the ILP implementation and the ASP implementation performed
rather bad. For the random graphs instances with 250 and 500 nodes could not be solved

29

under 1000 seconds on rather sparse graphs with parameter k = 1. Our leaf graphs are
all very sparse such that this effect plays a role as well. With increasing size the density
of our graphs even decreases.

Preadding vertex separator constraints had an measurable influence on the runtime. Un-
fortunately this effect alone could not improve the runtime in a manner that a satisfying
implementation for our model could be created. Despite the fact that many constraints
were preadded there were still a lot constraints that were added in the iteration process.
It could make sense to identify the types of constraints that are still added in the solution
process to prevent unnecessary iterations when they are added beforehand. This might
lead to a better runtime.

Another approach to improve the implementation can be to add violated constraints not
only after integer solutions are created but already when LP relaxations are calculated.
This approach was used in [3] and lead to sufficient LP bounds. Eine weitere Möglichkeit,
das Verfahren zu optimieren, wäre es, constraints nicht nur dann hinzuzufügen, wenn
eine ganzzahlige Lösung ermittelt wurde, sondern schon dann, wenn eine LP relaxierung
ermittelt wird. Dieser Ansatz wurde auch in [3] verfolgt. Dabei konnten sehr gute Erfolge
hinsichtlich der Lp Bound erzielt werden.

Recently a paper was published that compared different ILP formulations for the
MWCSP [15]. Rehfeldt et al. [15] compare theoretically and empirically an edge based
ILP formulation called Extended Steiner Arborescence Formulation (ESA) with the ILP
formulation from [8]. In this paper it is proven that the polyhedron of the ESA is a real
subset of the node based formulation from [8]. The computational results show that the
ESA outperforms the node based one as the runtime was shorter for most instances. Also
the with the ESA it was possible to solve previous unsovled instances. It it possible to cre-
ate an ILP formulation for our model which uses the connectivity inducing constraints of
the ESA. The implementation of the ESA is embedded in the upcoming version of SCIP-
Jack, a C based branch-and-cut framework for the Steiner Tree problem. The ESA also
needs exponentially many constraints to induce connectivity. As the efficiency and the
runtime of a branch-and-cut approach depends on concrete implementation details and
used heuristics, it would be necessary to explore the source code and the documenta-
tion. There are also several publications that can be found on the official SCIP webpage
https://www.scipopt.org/ that can be helpful. It could also be reasonable to com-
bine both approaches, such that a minimum k-hop dominating set Dt is found at first
and afterwards a minimun weight connected steiner tree D with Dt as set of terminals
is found. This method could benefit from the facts that our ILP formulation can find un-
connected minimum k-hop dominating sets rather quickly and MWCST instances can be
solved very quick using ESA. However this might lead to not necessarily optimal solu-
tions.

https://www.scipopt.org/

30 8 CONCLUSION

8 Conclusion

Given the fact that we adopted the model from [10] and only implemented it in another
framework the models shortcomings are still present. It disregards different aspects that
play a role in the venation pattern for real plants.

Additionally our implementation, in its current version, is not capable of generating op-
timal solutions in a reasonable amount of time for the leaf representing graphs. The ASP
implementation performs better on these graphs and therefore is the better choice for to
implement the model. Even after different approaches to reduce the runtime were eval-
uated the ASP implementation performed better. Nevertheless there are still approaches
that can be evaluated.

The next step for the ILP implementation should either be to adapt the edge based ILP
formulation ESA and aspects of its implementation from the current SCIP-Jack software,
or to improve the formulation of this thesis. It propably can be improved by inventing a
symmetry breaker that reduces the number of symmetrical unconnected integer solutions
which are determined in the solving process. Additionally it should be evaluated which
type of constraints can be further preadded that would otherwise be added anyway in the
process. Another important point is to find heuristics that allow to determine sufficient
lower bounds faster.

Though it is also reasonable to implement the suggestions from Hyunh [10] to further
improve the ASP implementation as it outperformed the ILP implementation.

31

32 A APPENDIX

A Appendix

Full Tables

ILP

name k # lazily added constraints runtime(s) optimal
GNM_ 50_ 122 1 66 0.034878 11
GNM_ 50_ 245 1 9 0.07 7
GNM_ 50_ 368 1 0 0.013882 5
GNM_ 50_ 490 1 4 0.016478 4
GNM_ 50_ 612 1 0 0.017783 4
GNM_ 50_ 735 1 3 0.018471 3
GNM_ 50_ 858 1 3 0.038161 3
GNM_ 50_ 980 1 3 0.023549 3
GNM_ 50_ 1102 1 3 0.019566 3
GNM_ 50_ 1225 1 0 0.002396 1
GNM_ 100_ 495 1 113 0.376731 14
GNM_ 100_ 990 1 17 0.488522 8
GNM_ 100_ 1485 1 7 0.396982 6
GNM_ 100_ 1980 1 0 0.315584 5
GNM_ 100_ 2475 1 0 0.045136 4
GNM_ 100_ 2970 1 0 0.013737 3
GNM_ 100_ 3465 1 0 0.010702 3
GNM_ 100_ 3960 1 0 0.007955 2
GNM_ 100_ 4455 1 0 0.00505 2
GNM_ 100_ 4950 1 0 0.00535 1
GNM_ 250_ 3112 1 0 1017.303471 [17;15]
GNM_ 250_ 6225 1 0 900.64 10
GNM_ 250_ 9338 1 0 29.67 7
GNM_ 250_ 12450 1 0 46.78 6
GNM_ 250_ 15562 1 0 12.29 5
GNM_ 250_ 18675 1 0 0.97 4
GNM_ 250_ 21788 1 3 0.415836 3
GNM_ 250_ 24900 1 0 0.040482 3
GNM_ 250_ 28012 1 0 0.024473 2
GNM_ 250_ 31125 1 0 0.017227 1
GNM_ 500_ 12475 1 42 1004.920676 [21;13]
GNM_ 500_ 24950 1 0 1051.277153 [12;8]
GNM_ 500_ 37425 1 0 9.89 4
GNM_ 500_ 49900 1 0 1017.23594 [6;5]
GNM_ 500_ 62375 1 0 178.495614 5
GNM_ 500_ 74850 1 0 9.753998 4
GNM_ 500_ 87325 1 0 21.368156 4
GNM_ 500_ 99800 1 0 0.286309 3
GNM_ 500_ 112275 1 0 0.189313 2
GNM_ 500_ 124750 1 0 0.11 1

Table 17: Minimum Connected rooted 1-hop Dominating Set Results on the random
graphs

33

name k # lazily added constraints optimal runtime(s)
GNM_ 50_ 122 2 67 11 0.03795
GNM_ 50_ 245 2 9 7 0.066219
GNM_ 50_ 368 2 0 1 0.008017
GNM_ 50_ 490 2 0 1 0.002605
GNM_ 50_ 612 2 0 1 0.002223
GNM_ 50_ 735 2 0 1 0.002411
GNM_ 50_ 858 2 0 1 0.002486
GNM_ 50_ 980 2 0 1 0.002173
GNM_ 50_ 1102 2 0 1 0.012025
GNM_ 50_ 1225 2 0 1 0.001756
GNM_ 100_ 495 2 6 4 0.108993
GNM_ 100_ 990 2 12 2 0.060489
GNM_ 100_ 1485 2 0 1 0.022559
GNM_ 100_ 1980 2 0 1 0.004219
GNM_ 100_ 2475 2 0 1 0.004791
GNM_ 100_ 2970 2 0 1 0.044863
GNM_ 100_ 3465 2 0 1 0.004259
GNM_ 100_ 3960 2 0 1 0.004273
GNM_ 100_ 4455 2 0 1 0.003927
GNM_ 100_ 4950 2 0 1 0.003468
GNM_ 250_ 3112 2 0 2 0.270981
GNM_ 250_ 6225 2 28 1 0.101028
GNM_ 250_ 9338 2 0 1 0.17136
GNM_ 250_ 12450 2 0 1 0.031756
GNM_ 250_ 15562 2 109 1 0.257635
GNM_ 250_ 18675 2 0 1 0.035879
GNM_ 250_ 21788 2 0 1 0.030358
GNM_ 250_ 24900 2 0 1 0.024402
GNM_ 250_ 28012 2 0 1 0.018999
GNM_ 250_ 31125 2 0 1 0.016561
GNM_ 500_ 12475 2 0 2 1.123904
GNM_ 500_ 24950 2 0 1 0.663096
GNM_ 500_ 37425 2 0 1 0.228299
GNM_ 500_ 49900 2 0 1 0.272308
GNM_ 500_ 62375 2 0 1 0.29011
GNM_ 500_ 74850 2 0 1 0.249534
GNM_ 500_ 87325 2 0 1 0.250321
GNM_ 500_ 99800 2 0 1 0.170296
GNM_ 500_ 112275 2 0 1 0.148031
GNM_ 500_ 124750 2 0 1 0.119448

Table 18: Minimum Connected rooted 2-hop Dominating Set Results on the random
graphs

34 A APPENDIX

name k # lazily added constraints optimal runtime(s)
GNM_ 50_ 122 3 0 2 0.01651
GNM_ 50_ 245 3 0 1 0.005787
GNM_ 50_ 368 3 0 1 0.007788
GNM_ 50_ 490 3 0 1 0.002089
GNM_ 50_ 612 3 0 1 0.002541
GNM_ 50_ 735 3 0 1 0.00202
GNM_ 50_ 858 3 0 1 0.001855
GNM_ 50_ 980 3 0 1 0.00213
GNM_ 50_ 1102 3 0 1 0.012196
GNM_ 50_ 1225 3 0 1 0.001661
GNM_ 100_ 495 3 0 1 0.026969
GNM_ 100_ 990 3 0 1 0.022669
GNM_ 100_ 1485 3 0 1 0.022822
GNM_ 100_ 1980 3 0 1 0.004204
GNM_ 100_ 2475 3 0 1 0.006448
GNM_ 100_ 2970 3 0 1 0.044946
GNM_ 100_ 3465 3 0 1 0.004356
GNM_ 100_ 3960 3 0 1 0.004163
GNM_ 100_ 4455 3 0 1 0.004094
GNM_ 100_ 4950 3 0 1 0.003533
GNM_ 250_ 3112 3 14 1 0.141794
GNM_ 250_ 6225 3 28 1 0.106819
GNM_ 250_ 9338 3 51 1 0.205765
GNM_ 250_ 12450 3 82 1 0.03714
GNM_ 250_ 15562 3 109 1 0.267159
GNM_ 250_ 18675 3 0 1 0.036207
GNM_ 250_ 21788 3 0 1 0.042911
GNM_ 250_ 24900 3 0 1 0.038669
GNM_ 250_ 28012 3 0 1 0.023179
GNM_ 250_ 31125 3 0 1 0.020695
GNM_ 500_ 12475 3 0 1 0.634489
GNM_ 500_ 24950 3 68 1 0.947696
GNM_ 500_ 37425 3 118 1 0.288719
GNM_ 500_ 49900 3 0 1 0.405276
GNM_ 500_ 62375 3 0 1 0.544754
GNM_ 500_ 74850 3 0 1 0.265611
GNM_ 500_ 87325 3 0 1 0.270045
GNM_ 500_ 99800 3 0 1 0.404701
GNM_ 500_ 112275 3 0 1 0.205316
GNM_ 500_ 124750 3 0 1 0.225787

Table 19: Minimum Connected rooted 3-hop Dominating Set Results on the random
graphs

35

ASP

name k runtime(s) optimal
GNM_ 50_ 122 1 0.014 11
GNM_ 50_ 245 1 0.033 7
GNM_ 50_ 368 1 0.031 5
GNM_ 50_ 490 1 0.050 4
GNM_ 50_ 612 1 0.055 4
GNM_ 50_ 735 1 0.044 3
GNM_ 50_ 858 1 0.050 3
GNM_ 50_ 980 1 0.059 2
GNM_ 50_ 1102 1 0.052 3
GNM_ 50_ 1225 1 0.055 1
GNM_ 100_ 495 1 32.451 14
GNM_ 100_ 990 1 278.296 8
GNM_ 100_ 1485 1 42.545 6
GNM_ 100_ 1980 1 4.049 6
GNM_ 100_ 2475 1 0.655 4
GNM_ 100_ 2970 1 0.226 3
GNM_ 100_ 3465 1 0.208 3
GNM_ 100_ 3960 1 0.234 2
GNM_ 100_ 4455 1 0.253 2
GNM_ 100_ 4950 1 0.246 1
GNM_ 250_ 3112 1 1017.204 [23;9]
GNM_ 250_ 6225 1 1009.124 [12;6]
GNM_ 250_ 9338 1 1009.402 [8;5]
GNM_ 250_ 12450 1 1013.976 [6;4]
GNM_ 250_ 15562 1 1008.099 [5;4]
GNM_ 250_ 18675 1 25.687 4
GNM_ 250_ 21788 1 1.749 3
GNM_ 250_ 24900 1 1.830 3
GNM_ 250_ 28012 1 3.400 2
GNM_ 250_ 31125 1 1.651 1
GNM_ 500_ 12475 1 1016.396 [29;7]
GNM_ 500_ 24950 1 1011.967 [15;4]
GNM_ 500_ 37425 1 1010.582 [10;4]
GNM_ 500_ 49900 1 1007.821 [7;4]
GNM_ 500_ 62375 1 1006.141 [6;4]
GNM_ 500_ 74850 1 597.053 4
GNM_ 500_ 87325 1 621.053 4
GNM_ 500_ 99800 1 13.348 3
GNM_ 500_ 112275 1 8.705 2
GNM_ 500_ 124750 1 8.058 1

Table 20: Minimum Connected rooted 1-hop Dominating Set Results on the random
graphs using ASP

36 A APPENDIX

name k optimal runtime(s)
GNM_ 50_ 122 2 5 0.025
GNM_ 50_ 245 2 1 0.030
GNM_ 50_ 368 2 1 0.036
GNM_ 50_ 490 2 1 0.036
GNM_ 50_ 612 2 1 0.038
GNM_ 50_ 735 2 1 0.046
GNM_ 50_ 858 2 1 0.047
GNM_ 50_ 980 2 1 0.049
GNM_ 50_ 1102 2 1 0.052
GNM_ 50_ 1225 2 1 0.048
GNM_ 100_ 495 2 4 0.084
GNM_ 100_ 990 2 2 0.098
GNM_ 100_ 1485 2 1 0.111
GNM_ 100_ 1980 2 1 0.143
GNM_ 100_ 2475 2 1 0.151
GNM_ 100_ 2970 2 1 0.174
GNM_ 100_ 3465 2 1 0.188
GNM_ 100_ 3960 2 1 0.206
GNM_ 100_ 4455 2 1 0.220
GNM_ 100_ 4950 2 1 0.213
GNM_ 250_ 3112 2 2 0.521
GNM_ 250_ 6225 2 1 0.652
GNM_ 250_ 9338 2 1 0.737
GNM_ 250_ 12450 2 1 0.867
GNM_ 250_ 15562 2 1 0.972
GNM_ 250_ 18675 2 1 1.141
GNM_ 250_ 21788 2 1 1.221
GNM_ 250_ 24900 2 1 1.305
GNM_ 250_ 28012 2 1 1.453
GNM_ 250_ 31125 2 1 1.519
GNM_ 500_ 12475 2 2 2.314
GNM_ 500_ 24950 2 1 2.770
GNM_ 500_ 37425 2 1 3.236
GNM_ 500_ 49900 2 1 3.702
GNM_ 500_ 62375 2 1 4.218
GNM_ 500_ 74850 2 1 4.799
GNM_ 500_ 87325 2 1 5.456
GNM_ 500_ 99800 2 1 6.199
GNM_ 500_ 112275 2 1 6.268
GNM_ 500_ 124750 2 1 6.522

Table 21: Minimum Connected rooted 2-hop Dominating Set Results on the random
graphs using ASP

37

name k optimal runtime(s)
GNM_ 50_ 122 3 2 0.022
GNM_ 50_ 245 3 1 0.029
GNM_ 50_ 368 3 1 0.032
GNM_ 50_ 490 3 1 0.039
GNM_ 50_ 612 3 1 0.041
GNM_ 50_ 735 3 1 0.040
GNM_ 50_ 858 3 1 0.041
GNM_ 50_ 980 3 1 0.048
GNM_ 50_ 1102 3 1 0.051
GNM_ 50_ 1225 3 1 0.053
GNM_ 100_ 495 3 1 0.082
GNM_ 100_ 990 3 1 0.101s
GNM_ 100_ 1485 3 1 0.119
GNM_ 100_ 1980 3 1 0.140
GNM_ 100_ 2475 3 1 0.163
GNM_ 100_ 2970 3 1 0.172
GNM_ 100_ 3465 3 1 0.186
GNM_ 100_ 3960 3 1 0.214
GNM_ 100_ 4455 3 1 0.227
GNM_ 100_ 4950 3 1 0.223
GNM_ 250_ 3112 3 1 0.529
GNM_ 250_ 6225 3 1 0.657
GNM_ 250_ 9338 3 1 0.782
GNM_ 250_ 12450 3 1 0.885
GNM_ 250_ 15562 3 1 0.967
GNM_ 250_ 18675 3 1 1.114
GNM_ 250_ 21788 3 1 1.263
GNM_ 250_ 24900 3 1 1.323
GNM_ 250_ 28012 3 1 1.489
GNM_ 250_ 31125 3 1 1.510
GNM_ 500_ 12475 3 1 2.297
GNM_ 500_ 24950 3 1 2.714
GNM_ 500_ 37425 3 1 3.250
GNM_ 500_ 49900 3 1 3.719
GNM_ 500_ 62375 3 1 4.513
GNM_ 500_ 74850 3 1 4.786
GNM_ 500_ 87325 3 1 5.305
GNM_ 500_ 99800 3 1 5.845
GNM_ 500_ 112275 3 1 6.490
GNM_ 500_ 124750 3 1 6.802

Table 22: Minimum Connected rooted 3-hop Dominating Set Results on the random
graphs using ASP

38 REFERENCES

References

[1] A. Bomersbach, M. Chiarandini, and F. Vandin. “An Efficient Branch and Cut Al-
gorithm to Find Frequently Mutated Subnetworks in Cancer”. In: Algorithms in
Bioinformatics. Ed. by M. Frith and C. Nørgaard Storm P. Springer International
Publishing, 2016, pp. 27–39.

[2] A. Buchanan, J. Sung, S. Butenko, and E. Pasiliao. “An Integer Programming Ap-
proach for Fault-Tolerant Connected Dominating Sets”. In: INFORMS Journal on
Computing 27 (Feb. 2015), pp. 178–188.

[3] R. Carvajal, M. Constantino, M. Goycoolea, J. Vielma, and A. Weintraub. “Impos-
ing Connectivity Constraints in Forest Planning Models”. In: Operations Research 61
(Aug. 2013), pp. 824–836.

[4] A. Conn, U. Pedmale, J. Chory, and S. Navlakha. “High-Resolution Laser Scanning
Reveals Plant Architectures that Reflect Universal Network Design Principles”. In:
Cell Systems 5 (July 2017), 53–62.e3.

[5] M. Desrochers and G. Laporte. “Improvements and Extensions to the Miller-
Tucker-Zemlin Subtour Elimination Constraints”. In: Oper. Res. Lett. 10.1 (Feb.
1991), pp. 27–36.

[6] N. Fan and J.-P. Watson. “Solving the Connected Dominating Set Problem and
Power Dominating Set Problem by Integer Programming”. In: Combinatorial Opti-
mization and Applications. Ed. by G. Lin. Springer Berlin Heidelberg, 2012, pp. 371–
383.

[7] M. Fischetti. Introduction to Mathematical Optimization. Independently Published,
2019.

[8] M. Fischetti, M. Leitner, I. Ljubic, M. Luipersbeck, M. Monaci, M. Resch, D. Sal-
vagnin, and M. Sinnl. “Thinning out Steiner trees: a node based model for uniform
edge costs”. English. In: Mathematical Programming Computation 9.2 (2017), pp. 203–
229.

[9] M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide to the Theory of
NP-Completeness. W. H. Freeman and Co., 1990.

[10] M. K. Hyunh. Solving Dominating Set Using Answer Set Programming. Feb. 2020.

[11] M. El-Kebir and G. W. Klau. Solving the Maximum-Weight Connected Subgraph Prob-
lem to Optimality. 2014. arXiv: 1409.5308 [cs.DS].

[12] C. E. Miller, A. W. Tucker, and R. A. Zemlin. “Integer Programming Formulation
of Traveling Salesman Problems”. In: J. ACM 7.4 (Oct. 1960), pp. 326–329.

[13] P. S. Nobel. Physicochemical and Environmental Plant Physiology. 4. Elsevier, 2009.

[14] J. Posada, R. Sievänen, C. Messier, J. Perttunen, E. Nikinmaa, and M. Lechowicz.
“Contributions of leaf photosynthetic capacity, leaf angle and self-shading to the
maximization of net photosynthesis in Acer saccharum: a modelling assessment”.
In: Annals of botany 110 (June 2012), pp. 731–41.

[15] D. Rehfeldt, H. Franz, and T. Koch. Optimal Connected Subgraphs: Formulations and
Algorithms. eng. Tech. rep. 20-23. ZIB, 2020.

http://arxiv.org/abs/1409.5308

REFERENCES 39

[16] L. Sack and C. Scoffoni. “Leaf venation: Structure, function, development, evolu-
tion, ecology and applications in the past, present and future”. In: The New phytolo-
gist 198 (Apr. 2013).

[17] Y. Wang, A. Buchanan, and S. Butenko. “On imposing connectivity constraints in
integer programs”. In: Mathematical Programming (Feb. 2017).

40 LIST OF TABLES

List of Figures

1 Illustration of vertex separators . 6

2 . 9

3 Illustration of the principle. The dashed circle outlines the dominating set.
All vertices, that are connected to n+ 1 are not part of the dominating set. 11

4 The dashed circle outlines the necessity to have connected triplets at the
end of a branch . 13

5 An unconnected solution where the path length constraint is satisfied. . . 14

6 The leaf graphs . 16

List of Tables

1 The characteristics of the leaf graphs . 17

2 Minimum Connected rooted k-hop Dominating Set Results on the leaf
graphs . 17

3 The characteristics of the random graphs 19

4 Minimum Connected rooted k-hop Dominating Set Results on the random
graphs . 20

5 The characteristics of the grid graphs . 21

6 Minimum Connected rooted k-hop Dominating Set Results on the grid
graphs . 21

7 Minimum Connected rooted k-hop Dominating Set Results using the MTZ
constraints . 22

8 Minimum Connected rooted k-hop Dominating Set Results with preadded
vertex separator constraints . 22

9 Minimum Connected rooted k-hop Dominating Set Results with IMN con-
straint . 23

10 Minimum Connected rooted k-hop Dominating Set Results with SPL con-
straint . 23

11 Minimum Connected rooted k-hop Dominating Set Results with GAUS
constraint . 23

12 Minimum Connected rooted k-hop Dominating Set Results with SPL and
GAUS constraint . 24

13 Minimum Connected rooted k-hop Dominating Set Results on the leaf
graphs using ASP . 24

14 Minimum Connected rooted k-hop Dominating Set Results on the random
graphs using ASP . 25

LIST OF TABLES 41

15 Minimum Connected rooted k-hop Dominating Set Results on the grid
graphs using ASP . 26

16 Time that is necessary to find appropriate upper bounds 26

17 Minimum Connected rooted 1-hop Dominating Set Results on the random
graphs . 32

18 Minimum Connected rooted 2-hop Dominating Set Results on the random
graphs . 33

19 Minimum Connected rooted 3-hop Dominating Set Results on the random
graphs . 34

20 Minimum Connected rooted 1-hop Dominating Set Results on the random
graphs using ASP . 35

21 Minimum Connected rooted 2-hop Dominating Set Results on the random
graphs using ASP . 36

22 Minimum Connected rooted 3-hop Dominating Set Results on the random
graphs using ASP . 37

	Abstract
	Introduction
	Preliminaries
	Linear Programming
	Definitions

	Methods
	Minimum Dominating Set
	Minimum k-hop Dominating Set
	Connectivity
	Minimum connected k-hop Dominating Set
	Minimum rooted connected k-hop Dominating Set
	Additional methods to tighten up the space of feasible solutions

	Implementation
	Results
	Discussion
	Conclusion
	Appendix
	References
	List of Figures
	List of Tables

