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Abstract Let G be a connected graph and k be a positive integer. A vertex subset D
of G is a k-hop connected dominating set if the subgraph of G induced by D is
connected, and for every vertex v in G there is a vertex u in D such that the distance
between v and u in G is at most k. We study the problem of finding a minimum
k-hop connected dominating set of a graph (Mink-CDS). We prove that Mink-CDS
is NP-hard on planar bipartite graphs of maximum degree 4. We also prove that
Mink-CDS is APX-complete on bipartite graphs of maximum degree 4. We present
inapproximability thresholds for Mink-CDS on bipartite and on (1, 2)-split graphs.
Interestingly, one of these thresholds is a parameter of the input graph which is not
a function of its number of vertices. We also discuss the complexity of computing
this graph parameter. On the positive side, we show an approximation algorithm for
Mink-CDS. Finally, when k = 1, we present two new approximation algorithms for
the weighted version of the problem restricted to graphs with a polynomially bounded
number of minimal separators.

Research supported by CNPq (Proc. 456792/2014-7), FAPESP (Proc. 2013/03447-6) and MaCLinC
project of NUMEC/USP. R.S. Coelho is supported by CAPES, P.F.S. Moura is supported by FAPESP
(Proc. 2013/19179-0, 2015/11930-4) and Y. Wakabayashi is partially supported by CNPq Grant
(Proc. 306464/2016-0).

B Rafael S. Coelho
rcoelho@ime.usp.br

Phablo F. S. Moura
phablo@ime.usp.br

Yoshiko Wakabayashi
yw@ime.usp.br

1 Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Brazil

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10878-017-0128-y&domain=pdf
http://orcid.org/0000-0002-1304-0891


J Comb Optim (2017) 34:1060–1083 1061

Keywords Approximation algorithms · Hardness · k-Hop connected dominating
set · k-Disruptive separator

1 Introduction

We address in this work generalizations of the minimum connected dominating set
problem, a classic combinatorial optimization problem, from the perspectivemainly of
approximation algorithms and inapproximability results.We use standard notation and
terminology in graph theory and approximation algorithms; for unexplained terms and
symbols, the reader may refer to Ausiello et al. (1999) and Bondy and Murty (2008).

All graphs considered hereafter are assumed to be finite, simple and undirected.
Let G be a graph. The sets of vertices and edges of G are denoted by V (G) and E(G),
respectively. Throughout this paper, k denotes a positive integer. A set D ⊆ V (G) is a
k-hop dominating set (or k-DS, for short) of G if every vertex of G is within distance
at most k from some vertex in D. If, additionally, G[D] (the subgraph of G induced
by D) is connected, then we call D a k-hop connected dominating set (or k-CDS, for
short). If D is a 1-(C)DS, we simply say that D is a (connected) dominating set (or
(C)DS, for short).

LetQ> andZ> be the sets of positive rational and positive integer numbers, respec-
tively. For every vertex weight functionw : V (G) → Q> and every non-empty subset
D ⊆ V (G), the weight of D relative to w (or the weight of D, when w is clear
from context), denoted by w(D), is defined as

∑
v∈D w(v). For simplicity, we extend,

in an analogous way, the notion of weight to non-empty subsets of any ground set.
Henceforth, by vertex-weighted graph, we mean a graph whose vertices are assigned
positive rational weights.

The open k-neighborhood of a vertex v in G, denoted by Nk
G(v), is defined as

the set of vertices in G, excluding v, that are at distance at most k from v. The
closed k-neighborhood of v in G, denoted by Nk

G[v], is defined as {v} ∪ Nk
G(v).

For every non-empty subset S ⊆ V (G) , we define Nk
G(S) := (

⋃
v∈S Nk

G(v))\S and
Nk
G[S] := ⋃

v∈S Nk
G[v]. To avoid notational overload, we omit the superscript k when

k = 1 and the subscript G when the graph G is implicit.
Theminimumweight connected k-hop dominating set problem (Mink-WCDS) asks

for a minimum weight k-CDS of a given vertex-weighted graph. From this point on,
whenever k appears in an acronym, as inMink-CDS, or in a statement without explicit
mention to its bounds, k should be read as any fixed positive integer. For convenience,
we write Mink- CDS for the cardinality (unweighted) variants of the problem. In
addition, if k = 1, then we write Min(W)CDS.

A vertex v ∈ V (G) is k-universal if {v} is a k-CDS of G. We restrictMink-WCDS
only to graphs with at least k + 2 vertices, none of which is k-universal, and with
maximum degree at least 3, since, otherwise, the problem can be solved efficiently.

In application scenarios involving ad hoc wireless networks, the design of so called
virtual backbones is a central issue when it comes to the reduction of routing costs,
signal interference and energy consumption. In such a context, k-hop connected dom-
inating sets play an important role (Blum et al. 2005; Yu et al. 2013; Yadav et al.
2015).
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2 Literature review

There is a vast literature on MinCDS and Mink-CDS. In this section, we mention
some results which are closer to the aspects addressed in this paper, and note that this
review is by no means exhaustive. To make the exposition clearer, we split this section
into two subsections. The first one covers algorithms for polynomial-time solvable
cases as well as approximation algorithms for MinCDS and Mink-CDS. The second
one focuses on NP-hardness and inapproximability results for these problems.

2.1 Polynomial cases and approximation algorithms

Many authors have devised efficient algorithms for MinCDS on restricted classes of
graphs, such as distance-hereditary (D’Atri and Moscarini 1988), permutation (Col-
bourn and Stewart 1990), doubly chordal (Moscarini 1993), strongly chordal (White
et al. 1985) and trapezoid graphs (Liang 1995). MinWCDS, that is, the weighted
counterpart ofMinCDS, is known to be solvable in polynomial time on series-parallel
(White et al. 1985), interval (Ramalingam and Rangan 1988), distance-hereditary
(Hong-Gwa and Chang 1998) and permutation graphs (Arvind and Regan 1992).
Furthermore, Mink-CDS can be solved efficiently on distance-hereditary graphs
(Brandstädt and Dragan 1998), HT-graphs (Dragan 1993) and graphs with bounded
treewidth (Borradaile and Le 2015).

In regard to approximation algorithms for Min(W)CDS and Mink-CDS, we high-
light the following works, with emphasis on results for arbitrary graphs.

Starting with MinCDS, Guha and Khuller (1998), to the best of our knowledge,
gave the first contributions in this line of research, namely a greedy 2(H(Δ(G))+1)-
approximation and a slightly more involved (lnΔ(G) + 3)-approximation, where
G is the input graph and H(�) denotes the �-th Harmonic number. Six years later,
Ruan et al. (2004) developed a (lnΔ(G)+2)-approximation, which was subsequently
improved by Du et al. (2008), who proposed an approximation algorithm with ratio
(1 + ε)(1 + ln(Δ(G) − 1)), for every fixed 0 < ε ≤ 1. Recently, Khuller and Yang
(2016), building on some of the ideas of Guha and Khuller (1998), managed to devise
two approximation algorithms for MinCDS, one with ratio H(2Δ(G) + 1) + 1 and
another with ratio H(Δ(G))+√

H(Δ(G))+1. For cubic graphs, a 4/3-approximation
algorithm was given by Bonsma and Zickfeld (2008).

For MinWCDS, that is, when we allow vertices to have arbitrary positive ratio-
nal weights, Guha and Khuller (1998) proposed a 3 ln n-approximation for n-vertex
graphs, which was then improved to a (1.35 + ε) ln n-approximation, for every fixed
ε > 0, by the same authors (Guha andKhuller 1999). Amore comprehensive overview
of the literature on approximation algorithms forMin(W)CDS can be found in Du and
Wan (2012).

As far as we know, no approximation algorithms forMink-CDS on general graphs
have been proposed so far. However, Ren and Zhao (2011) presented an approxi-
mation algorithm for the minimum connected set cover problem (MinCSC), to which
Mink-CDS can be reduced. In fact, these authorsmention a reduction fromMinCDS to
MinCSC. We describe now how to extend this idea to reduceMink-CDS toMinCSC.
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In the MinCSC problem, we are given a triple (U,C,G), where U is a finite set (the
universe), C is a family of subsets of U , and G is a graph with vertex set C (that is,
the elements of C are the labels of the vertices of G). The objective of this problem is
to find K ⊆ C with minimum cardinality such that G[K ] is connected and K covers
U . To reduce an instance, say H , ofMink-CDS to an instance (U,C,G) ofMinCSC,
we proceed as follows. We let G be a graph isomorphic to H , take U := V (H), and
C := {Nk

H [v] : v ∈ V (H)}; moreover, for each vertex v ∈ V (H), its corresponding
vertex in V (G) receives the label Nk

H [v] (the set of vertices in H at a distance at
most k from v). Thus, given H , the construction of the instance for Mink-CDS con-
sists basically in finding, for each vertex v, the set Nk

H [v]. Clearly, this can be done in
polynomial time. The reader may refer to Ren and Zhao (2011) to see an illustration
of this reduction for the case k = 1.

Ren and Zhao’s algorithm forMinCSC outputs a Dc(G)(H(maxX∈C |X |−1)+1)-
approximate solution, where Dc(G) is the maximum distance in G taken over all pairs
of vertices X,Y ∈ C such that X ∩ Y 	= ∅. Note that Ren and Zhao’s algorithm
translates into a 2k(H(Δ(Gk))+ 1)-approximation forMink-CDSwhere Gk denotes
the k-th power of G, that is, the graph with vertex set V (G) where two vertices are
adjacent if they are within distance at most k in G.

Before closing this subsection, we should also point out that there is a substantial
(and growing) body of works dealing with polynomial-time approximation schemes
as well as decentralized (by that we mean distributed or local) approximations for
Min(W)CDS and Mink-CDS on special classes of graphs. For a selection of these
papers, we refer the reader to Cheng et al. (2003), Nieberg and Hurink (2006), Zhang
et al. (2009), Gao et al. (2010), Demaine and Hajiaghayi (2005), Cohen-Addad et al.
(2016),Wan et al. (2002), Amiri et al. (2017), Dubhashi et al. (2005), Jallu et al. (2017)
and other references therein.

2.2 NP-hardness and inapproximability results

As forNP-hardness results,MinCDS has been proven to beNP-hard, for example, for
split (White et al. 1985), chordal bipartite (Müller and Brandstädt 1987), and planar
bipartite graphs (White et al. 1985). Moreover, Nguyen and Huynh (2006) showed
that Mink-CDS is NP-hard on planar unit disk graphs of maximum degree 4 and
Lokshtanov et al. (2013) proved thatMink-CDS is NP-hard on graphs with diameter
k + 1. These are the strongest NP-hardness results forMink-CDS as far as we know.
For further details on computational complexity results for MinCDS, we direct the
reader to the book by Haynes et al. (1998) (although now somewhat outdated).

On the side of approximation hardness, in 2004, Chlebík and Chlebíková (2004)
showed that, for every fixed ε > 0, there is no (1 − ε) ln n-approximation algorithm
forMinCDS on n-vertex bipartite and split graphs, unlessNP ⊆ DTIME(nO(log log n)).
Four years later, the same authors (Chlebík and Chlebíková 2008) proved that there
exist constants C > 0 and B0 ≥ 3 such that, for every B ≥ B0, it is NP-hard to
approximate MinCDS to within a factor of ln B − C ln ln B on bipartite graphs with
maximum degree at most B. In 2012, Bonsma (2012) proved that MinCDS is APX-
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complete on cubic graphs. As far as we know, there have been no inapproximability
results forMink-CDS (that is, for general k) prior to this work.

3 Contributions

As discussed in the introduction, our contributions advance the state-of-the-art on
Mink-CDS in two directions: approximation algorithms and inapproximability results.

As for approximations, we prove a type of meta-approximation theorem which
says that, for every graph G, a β(G)-approximation forMinCDS on G can be turned
into a kβ(Gk)-approximation for Mink-CDS on G. As a consequence, we derive an
algorithm that, for every fixed 0 < ε ≤ 1, finds a k(1 + ε)(1 + ln(Δ(Gk) − 1))-
approximation for Mink-CDS on G, which is an improvement (asymptotically by a
factor of 2) on Ren and Zhao’s 2k(H(Δ(Gk)) + 1)-approximation (Ren and Zhao
2011).

We also propose two approximation algorithms forMinWCDS restricted to special
classes of graphs (to be defined in Sect. 4), namely graphswith a polynomial number of
minimal separators (which are inclusionwise minimal sets of vertices whose removal
disconnects the graph). The first algorithm has an approximation factor which is log-
arithmic in the number of minimal separators of the input graph. Thus, we deem it
more suitable for graphs with “few” separators (say with a linear or sublinear number
of separators relative to the size of the graph, such as split graphs).

The second approximation algorithm has a performance guarantee that depends on
a parameter of the input graph, namely the cardinality of its largest minimal separator,
which is independent of its order (in the sense that this parameter does not necessarily
grow with the number of vertices of the graph). Therefore, this second algorithm is
more appropriate for graphs whose minimal separators contain a small number of
vertices (say bounded by a constant). Interestingly, we show that, for certain classes
of graphs, the approximation factor of the latter algorithm is close to the best one can
hope for, assuming P 	= NP.

On the hardness side, in Sect. 5, we show thatMinCDS isΩ(log n)-hard to approx-
imate even on n-vertex split graphs with diameter 2, if NP � DTIME(nO(log log n)).
Asymptotically, this threshold is the same as the one proved byChlebík andChlebíková
(2004) for MinCDS but it holds for the smaller class of split graphs of diameter 2
(surely the smallest value of the diameter for which the problem is non-trivial). In
Sect. 6, we prove thatMink-CDS is NP-hard on planar bipartite graphs of maximum
degree 4. Moreover, we present inapproximability thresholds forMink-CDS, general-
izing the ones already known forMinCDS, on bipartite graphs and on a superclass of
split graphs called (1, 2)-split graphs. Finally, we also show thatMink-CDS is APX-
complete on bipartite graphs of maximum degree 4. These results are shown to hold
for every fixed k.

4 Approximation algorithms

For a problem Π and an instance I of Π , we denote by OPTΠ(I ) the value (that is,
the cardinality or the weight) of an optimal solution of Π for the instance I .
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We show first an approximation algorithm for Mink-CDS, and then we present
two approximation algorithms for MinWCDS restricted to special classes of graphs.
We start with the algorithm ApproxMink- CDS (see Algorithm 1). It uses (as
a subroutine) an approximation algorithm, say A, for MinCDS. Given an input
graph G,ApproxMink- CDS computes Gk , and then it runs A on Gk , thus find-
ing a CDS, say D, of Gk . Finally, it connects the components of G[D] (in case G[D]
is disconnected) by adding at most (k − 1)(|D| − 1) extra vertices to D.

Algorithm 1 ApproxMink-CDS
Input: A graph G
Subroutine: An approximation algorithmA forMinCDS
Output: A k-CDS of G
1: Compute Gk � the k-th power of G
2: D ← A(Gk ) � A is an approximation algorithm forMinCDS
3: S ← D
4: while G[S] is not connected do
5: Choose vertices u and v in different components of G[S]

such that the distance between u and v in G is minimum
6: Compute a shortest path from u to v in G
7: Let P be the set of internal vertices of the path obtained in line 6
8: S ← S ∪ P
9: end while
10: return S

Theorem 1 Let G be a graph. If there exists an algorithm forMinCDS with approxi-
mation factor β(G), then, for every k ∈ Z>, there exists an approximation algorithm
forMink-CDS with approximation factor kβ(Gk).

Proof LetG be a graph and letA be a polynomial-timeβ(G)-approximation algorithm
for MinCDS (used in step 2). Clearly, ApproxMink- CDS runs in polynomial time.
Moreover, it is immediate that it produces a k-CDS of G.

Let S ⊆ V (G) be the solution output by ApproxMink- CDS. Since a k-CDS of
G is a CDS of Gk , it follows that OPTMinCDS(Gk) ≤ OPTMink- CDS(G). Thus, it
suffices to show that |S| ≤ kβ(Gk)OPTMinCDS(Gk). By hypothesis, we have that
|D| ≤ β(Gk)OPTMinCDS(Gk). If G[D] is connected, then the proof is complete.

Assume now that G[D] has at least two components. Let t be the number of
iterations performed by the while loop in lines 4–9. Let S0 = D and, for every
j ∈ {1, . . . , t}, let S j be the set S at the end of the j th iteration of the while loop. For
every j ∈ {1, . . . , t}, let u j and v j be the vertices chosen in the j th iteration in line 5,
letCu j andCv j be the components ofG[S j−1] that contain u j and v j , respectively, and
let Pj be the set P chosen in line 7 in the j th iteration. Fix some j ∈ {1, . . . , t}. Since
Gk[S j−1] is connected, there is an edge of Gk with an endpoint, say w, in V (Cu j )

and an endpoint, say y, in some superset of V (Cv j ). Since y and w are adjacent in
Gk , then y is within distance at most k from w in G and, thus, the same holds for
u j and v j . Therefore, |Pj | ≤ k − 1 and G[S j ] has at least one component less than
G[S j−1]. So we conclude that t ≤ |D| − 1. Furthermore, we have

123



1066 J Comb Optim (2017) 34:1060–1083

|S| ≤ |D| + (k − 1)(|D| − 1) ≤ k|D|,

and the result follows. ��
Du et al. (2008) proposed an approximation algorithm for MinCDS with ratio

(1+ ε)(1+ ln(Δ(G)−1)) for every fixed 0 < ε ≤ 1. The following is a consequence
of Theorem 1 using Du et al.’s algorithm as a subroutine.

Corollary 1 For every k ∈ Z> and every fixed 0 < ε ≤ 1, there exists a polynomial-
time algorithm forMink-CDS with approximation ratio k(1+ε)(1+ ln(Δ(Gk)−1)),
where G is the input graph.

Asmentioned in the introduction, Ren and Zhao (2011) presented an approximation
algorithm for MinCSC that, for every input graph G and every k, translates into a
2k(H(Δ(Gk))+ 1)-approximation forMink-CDS. Since ln(�− 1) < H(�) for every
integer � ≥ 2, Corollary 1 shows an improvement (asymptotically by a factor of 2) on
Ren and Zhao’s algorithm.

Observe that algorithm ApproxMink-CDS indicates thatMink-CDS admits a con-
stant approximation on bounded degree graphs. The approximation factor of this
algorithm follows from the previous corollary and can be expressed in terms of k
and the degree bound.

Corollary 2 For every k ∈ Z>, there is a constant approximation algorithm for
Mink-CDS on bounded degree graphs.

We turn now our focus to MinWCDS. Before we describe the approximation
algorithms for MinWCDS, we define some concepts. A separator of G is a sub-
set Γ ⊆ V (G) such that G −Γ (the subgraph of G obtained from G by removing the
vertices in Γ ) has more components than G. A separator of G is minimal if it does
not properly contain any other separator. Hereafter, the word minimal for a set means
inclusionwise minimal.

A subset Γ ⊆ V (G) is a k-hop domination disruptive separator (or k-disruptive
separator, for short) if Γ is a separator of G and, for every component C of G −
Γ, V (C) is not a k-CDS of G. In other words, Γ is a k-disruptive separator of G if
and only if Γ intersects every minimal k-CDS of G. Note that a vertex subset of G
is a 1-disruptive separator of G if and only if it is a separator of G. We denote by
Sk(G) (or simply S(G) when k = 1) the set of all minimal k-disruptive separators of
a graph G. Let σk(G) = maxΓ ∈Sk (G) |Γ | and we write σ(G) when k = 1.

Given a universeU and a collection C of subsets ofU , a transversal of C is a subset
of U that intersects every element of C. The following result will be referenced many
times.

Theorem 2 (Kanté et al. 2011) Let G be a graph and S(G) be the set of all minimal
separators of G. A set D ⊆ V (G) is a CDS of G if and only if D is a transversal of
S(G).

We say that a class C of graphs has a polynomial number of minimal k-disruptive
separators (or that C has poly-k-separators, for short) if there exists a polynomial p
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such that |Sk(G)| ≤ p(n) for every n-vertex graph G belonging to C. We also say that
a graph G has poly-k-separators if G belongs to some class with poly-k-separators.
For simplicity, when k = 1, we write poly-separators to refer to poly-1-separators.
Berry et al. (1999) designed an algorithm that, for every given graphG with n vertices,
enumerates all minimal separators of G in O(n3) time per separator.

Many well-studied classes of graphs have poly-separators. Examples include
chordal graphs (Chandran and Grandoni 2006), d-trapezoid graphs, weakly chordal
graphs, co-comparability graphs with bounded dimension (Brandstädt et al. 1987),
2K2-free graphs (Dhanalakshmi et al. 2016) and P4-sparse graphs (Nikolopoulos and
Palios 2006) (for more examples, see Kloks and Kratsch 1998).

Now we discuss approximation algorithms for MinWCDS restricted to classes
of graphs with poly-separators. The first one (see Algorithm 2) is CoverApprox
MinWCDS. In order to explain how this algorithm functions, we have to define an
auxiliary problem, namely the minimum weight set cover problem (MinWSC), which
has the following description: given a universe U , a collection of subsets C of U and
a weight function w′ : C → Q>, the objective is to find a minimum weight cover
K ⊆ C of U .

Essentially,CoverApproxMinWCDSworks as follows: firstly, it takes an instance
(G, w) ofMinWCDS (where G is a graph with poly-separators andw : V (G) → Q>

is a weight function) and “reduces” it to an “equivalent” instance of MinWSC; and,
secondly, it runs on the resulting instance an approximation algorithm for MinWSC
proposed by Chvátal (1979), denoted here as MinWSC- ChvÁtal.

Algorithm 2 CoverApproxMinWCDS
Input: A graph G with poly-separators and a weight function w : V (G) → Q>

Subroutine: An approximation algorithm MinWSC- ChvÁtal forMinWSC
Output: A CDS of G
1: Run Berry et al.’s algorithm (1999) to compute S(G)

2: for all v ∈ V (G) do
3: Fv ← {Γ ∈ S(G) : v ∈ Γ }
4: end for
5: F ← {Fv : v ∈ V (G)}
6: Let w′ : F → Q> be the weight function such that w′(Fv) = w(v) for every v ∈ V (G)

7: K ← MinWSC- Chvátal(S(G),F , w′)
8: S ← {v ∈ V (G) : Fv ∈ K }
9: return S

Theorem 3 Let G be a graph with poly-separators and w : V (G) → Q> a weight
function. The algorithm CoverApproxMinWCDS produces, in polynomial time, an
H(|S(G)|)-approximate solution forMinWCDS on (G, w).

Proof First, note that, since G has poly-separators, the algorithm runs in polynomial
time. Let S ⊆ V (G) be the solution output by the algorithm. By construction, S is a
transversal of S(G), and thus, by Theorem 2, S is a CDS of G. As proved in Chvátal
(1979), for any instance (U,C, w′) of MinWSC, Chvátal’s algorithm finds an H(�)-
approximate cover of U , where � is the cardinality of the largest set in C. Therefore,
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algorithm CoverApproxMinWCDS yields an H(|S(G)|)-approximate solution for
MinWCDS on (G, w). ��

We remark that, for n-vertex graphs with o(n1.35) minimal separators (such as split
graphs), CoverApproxMinWCDS may outperform Guha and Khuller’s approxima-
tion (1999) forMinWCDS, which has a factor of (1.35+ ε) ln n, for any fixed ε > 0.

Now we discuss one last approximation algorithm for MinWCDS, namely
LPApproxMin- WCDS (see Algorithm 3). Recall that, for every graph G, we denote
by σk(G) the cardinality of the largest minimal k-disruptive separator of G.

In a conference version of this paper (Coelho et al. 2015), we stated a result (without
proof), which says that, for every instance of MinWCDS, there exists an algorithm
that efficiently finds a σ(G)-approximate solution for MinWCDS on an input graph
G. Unfortunately, our argument was flawed because, in order to make it work, we
needed a polynomial-time algorithm for computing σ(G). In fact, we were able to
prove that computing this graph parameter is an NP-hard problem already for planar
graphs with small maximum degree. For completeness, we include this proof here
and then we discuss a σ(G)-approximation algorithm forMinWCDS for graphs with
poly-separators.

Proposition 1 For every k ∈ Z>, it is NP-hard to compute σk(G) even for planar
bipartite graphs G with maximum degree 4.

Proof The maximum doubly connected cut problem (MaxDCC) consists in finding
in a connected graph G a doubly connected cut (S, S) of maximum cardinality, that
is, a partition (S, S) of V (G) such that G[S] and G[S] are connected, and with the
maximum number of crossing edges (edges with an endpoint in S and the other in S).

Haglin andVenkatesan (1991) showed that the decision version ofMaxDCC isNP-
complete on 3-connected cubic planar graphs. We present a reduction fromMaxDCC
to the decision version of our problem, which asks, given a graph G and an integer q,
if G has a minimal separator containing at least q vertices.

Let G be a 3-connected cubic planar graph. We build from G a graph G ′ with
vertex set V (G ′) = V (G) ∪ {we : E(G)} ∪ (∪v∈V (G)V (Pv)) as follows. First, we
take G and subdivide each of its edges exactly once. For every e ∈ E(G), we denote
by we the vertex of the subdivision of edge e. For every v, we take a new path Pv

(disjoint from the subdivision of G), with initial vertex uv and with k vertices. Then,
for every v ∈ V (G), we add the edge uvv (that is, we append the path Pv to v).
The graph G ′ has |V (G)| + |E(G)| + k |V (G)| vertices. The construction of G ′ is
depicted in Fig. 1. Clearly, G ′ can be constructed in time polynomial in the size of G.
Furthermore, G ′ is planar, bipartite and it has maximum degree 4.

Observe that each v ∈ V (G) is a cut vertex of G ′. Thus every minimal k-disruptive
separator in G ′ that contains any vertex of V (G) has size exactly 1. Moreover, for
every v ∈ V (G), it is clear that no minimal k-CDS of G ′ intersects V (Pv). Conse-
quently, every minimal k-disruptive separator of G ′ of size larger than 1 is contained
in {we : e ∈ E(G)}. It is easy now to see that F = (S, S) is a doubly connected cut in
G if and only if {w f ∈ V (G ′) : f ∈ EF } is a minimal k-disruptive separator of G ′,
where EF is the set of crossing edges induced by F . Therefore, G has a doubly con-
nected cut with at least q crossing edges if and only if G ′ has a minimal k-disruptive
separator of size at least q. ��
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Fig. 1 Graph G′ obtained from
G with the construction
described in the proof of
Proposition 1. a Graph G.
b Graph G′

e
v v

we

Pv
uv

(a) (b)

Algorithm 3 LPApproxMinWCDS
Input: A graph G with poly-separators and a weight function w : V (G) → Q>

Output: A CDS of G
1: Run Berry et al.’s algorithm (1999) to compute S(G)

2: Let x∗ = (x∗
v )v∈V (G) be an optimal solution to the linear program

min
{∑

v∈V (G) w(v)xv : ∑
v∈Γ xv ≥ 1 for all Γ ∈ S(G), xv ≥ 0 for all v ∈ V (G)

}

3: Compute σ(G)

4: D ← {v ∈ V (G) : x∗
v ≥ 1/σ(G)}

5: return D

Theorem 4 Let G be a graph with poly-separators and w : V (G) → Q> a weight
function. The algorithm LPApproxMinWCDS finds, in polynomial time, a σ(G)-
approximate solution for MinWCDS on (G, w).

Proof We claim that the set D output by the algorithm is a CDS of G. Let x∗ be as
defined in line 2. For every Γ ∈ S(G), we have that max{x∗

v : v ∈ Γ } ≥ 1/|Γ | ≥
1/σ(G). Thus, D is a transversal of S(G), and by Theorem 2, D is a CDS of G.
Again, by Theorem 2, we know that every CDS of G yields a feasible solution to the
linear program defined in line 2. Thus,

∑
v∈V (G) w(v)x∗

v ≤ OPTMinWCDS(G, w), and
therefore,

w(D) =
∑

v∈D
w(v) ≤ σ(G)

( ∑

v∈D
w(v)x∗

v

)

≤ σ(G) · OPTMinWCDS(G, w).

Since G has poly-separators, LPApproxMinWCDS runs in polynomial time. This
concludes the proof. ��

We discuss now why we were not able to extend Theorem 4 toMink-WCDS. The
crux of the matter here is that, for some graphs G, it seems that the structure of Sk(G),
when k ≥ 2, is quite different (and much more complex, we think) when compared
to S(G). We are not aware of any algorithm that enumerates, for every k ≥ 2, all
minimal k-disruptive separators of any given input graph G with poly-k-separators
in polynomial time in the size of G. In fact, we would like to posit the following
conjecture.
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Fig. 2 The vertex subset
S = {x, y, z} is a minimal
2-disruptive separator but it is
not a minimal separator

Conjecture 1 There exists an integer k ≥ 2 and a class C of graphs with poly-k-
separators for which it is NP-hard to compute σk(G) for every graph G belonging
to C.

Observe that, if P 	= NP and if Conjecture 1 is true, then there cannot be an
algorithm that, for all k ≥ 2 and every n-vertex graph with poly-k-separators, lists
the elements of Sk(G) in nO(1) time. Note that, for k = 1, there is such an algorithm,
namely Berry et al.’s algorithm (1999). Thus, Proposition 1 implies (for k = 1),
assuming P 	= NP, that not all bipartite planar graphs with maximum degree 4 have
poly-separators. Otherwise, using Berry et al.’s algorithm, we could compute σ(G)

efficiently for graphs G in this class, implying that P = NP.
Another question related to the graph parameter σk concerns the relation (if any)

between the sets Sk(G),S(G) and S(Gk) for every graph G. At first, we attempted
to prove that Sk(G) ⊆ S(G) ∪ S(Gk). However, as illustrated in Fig. 2, already for
k = 2, such inclusion does not hold. It is straightforward to check, in Fig. 2, that the
set of vertices S = {x, y, z} is a minimal 2-disruptive separator and not a minimal
separator because it properly contains a separator, for instance S′ = {y, z}. Moreover,
one can check that the vertices x, y, z do not form a separator in the square of the
graph depicted in Fig. 2. It would be interesting to find out, for general graphs or even
for particular classes of graphs, how the set of all minimal k-disruptive separators,
when k ≥ 2, relates to other graph parameters.

5 Hardness results for MINCDS

In this section, we strengthen some known results in theMinCDS literature concerning
hardness of approximation. Before we state the results, we recall some definitions. For
any graphG, we denote by α(G) andω(G) the stability number (the size of the largest
stable set) and the clique number (the size of the largest clique) of G, respectively. We
say that G is a split graph if V (G) can be partitioned into two sets K and S such that
K is a clique and S is a stable set inG. Such a partition (K , S) is called a split partition
of G. We point out, for future reference, that Heggernes and Kratsch (2007) designed
a linear-time algorithm (henceforth called Heggernes–Kratsch algorithm) that finds a
split partition for any given split graph.

We now discuss the main results of this section. Firstly, we show that MinCDS is
Ω(log n)-hard to approximate even on n-vertex split graphs with diameter 2, assuming
NP � DTIME(nO(log log n)). Lokshtanov et al. (2013) proved thatMinCDS isNP-hard
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on split graphs with diameter 2. In the sequence, we show that the polynomial-time
reduction discussed in Lokshtanov et al. (2013) can be used to prove hardness of
approximation for MinCDS on split graphs with diameter 2. Before proving that, we
state two theorems, for future reference, and a support lemma.

Theorem 5 (Chlebík and Chlebíková 2004) For every fixed ε > 0,MinCDS cannot
be approximated to within a factor of (1 − ε) ln n on n-vertex split graphs and on
bipartite graphs, unless NP ⊆ DTIME(nO(log log n)).

Theorem 6 (Golumbic 2004, Theorem 6.2) Let G be a split graph and let (K , S) be
a split partition of G. If K is a maximum clique and S is a maximum stable set in G,
then (K , S) is the unique split partition of G.

Lemma 1 For every fixed ε > 0,MinCDS cannot be approximated to within a factor
of (1− ε) ln n on n-vertex split graphs with a unique split partition having both sides
of even cardinality, unless NP ⊆ DTIME(nO(log log n)).

Proof In what follows, we describe a polynomial-time reduction that, for every given
split graph G, produces a split graph G ′ with a unique split partition having both sides
of even cardinality.

The reductiongoes as follows.LetG be a split graph.We run theHeggernes–Kratsch
algorithm on G to obtain a split partition (K , S) of G. Let p = |K | and � = |S| and
suppose that K = {c1, . . . , cp} and S := {s1, . . . , s�}. It is straightforward to see that
we may assume that S is a maximal stable set in G. Let G ′ be a disjoint copy of G.
For each v ∈ V (G), we denote by v′ the copy of v in G ′. Consider the natural split
partition K ′ = {v′ : v ∈ K } and S′ = {v′ : v ∈ S} of G ′. We now define a graph H
obtained from the union of G and G ′ by adding all possible edges between vertices
in K and K ′. Clearly, (K ∪ K ′, S ∪ S′) is a split partition of H , and α(H) = |S ∪ S′|
and ω(H) = |K ∪ K ′|. Hence, by Theorem 6, H has a unique split partition.

It is easy to prove that if G has a CDS with at most q vertices then H has a CDS
with at most 2q vertices. The converse also holds. Suppose H has CDS D̂ such that
|D̂| ≤ 2q. We may assume that D̂ ⊆ K ∪ K ′. We can also suppose, without loss of
generality, that |D̂∩K | ≤ |D̂∩K ′|. Since D̂ is a CDS of H , then, by the construction
of H , we conclude that D̂ ∩ K is a CDS of G with at most q vertices.

Thus, we conclude that OPTMinCDS(H) ≤ 2OPTMinCDS(G). Now we are ready to
prove the lemma. Assume NP � DTIME(nO(log log n)) and suppose, for a contradic-
tion, that there exists an approximation algorithm with ratio (1− ε) ln n, where ε < 1
is a fixed positive constant, for MinCDS on n-vertex split graphs with a unique split
partition having both sides of even cardinality. Let us call such algorithmAε. Consider
the following algorithm A′ that, for every n-vertex split graph G, runs as follows.

Step 1. Check if nε < 2. If yes, then solve MinCDS on G by brute force and return
an optimal solution. Otherwise, go to the next step;

Step 2. Run the reduction described previously on G to obtain H ;
Step 3. Run Aε on H to obtain D̂;
Step 4. Compute D from D̂ (as explained in the reduction) and return D.

One may easily check that A′ is a polynomial-time algorithm. We claim that A′
always returns a (1 − ε2) ln n-approximate CDS of G. Indeed, if A′ halts on step 1,
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Fig. 3 Reduction described in the proof of Theorem 7. a Graph G with split partition (K , S). b Graph G′
with diameter 2 and split partition (K ′, S)

then, by construction, it returns an optimal CDS of G. Suppose that A′ halts after
step 4. By hypothesis, |D̂| ≤ (1− ε) ln |V (H)|OPTMinCDS(H). But now, since |D̂| ≥
2|D|,OPTMinCDS(H) ≤ 2OPTMinCDS(G), |V (H)| = 2n and nε ≥ 2, we conclude
that

|D| ≤
(
(1 − ε) ln n1+ε

)
OPTMinCDS(G) =

((
1 − ε2

)
ln n

)
OPTMinCDS(G).

Therefore, the existence of A′ contradicts Theorem 5, and the result follows. ��
The next result indicates that the inapproximability threshold forMinCDS in Theo-

rem 5, proven by Chlebík and Chlebíková (2004), remains unchanged, asymptotically
speaking, even if we restrict the problem to graphs of diameter 2. We note that the
reduction constructed in the proof of Chlebík and Chlebíková’s result produces graphs
with diameter greater than 2.

Theorem 7 MinCDS cannot be approximated to within a factor of c ln n for any
positive constant c < 1/4 on n-vertex split graphs with diameter 2, unless NP ⊆
DTIME(nO(log log n)) .

Proof Let us first recall the reduction constructed by Lokshtanov et al. (2013) to show
that MinCDS is NP-hard on split graphs with diameter 2.

Given a split graph G with a unique split partition having both sides of even
cardinality, first we run the Heggernes–Kratsch algorithm to find the split partition
(K , S) of V (G). We define a graph G ′ with vertex set V (G ′) = S ∪ K ′, where
K ′ := {ze : e ∈ E(G[K ])}. For every edge e = uv ∈ E(G[K ]),G ′ has an edge zew
for everyw ∈ (NG(u)∪NG(v))∩S. Moreover,G ′ has all possible edges between ver-
tices belonging to K ′, that is, K ′ induces a clique in G ′. This construction is depicted
in Fig. 3. Clearly, G ′ is a split graph with diameter 2 and can be constructed in time
polynomial in the size of G. Furthermore, observe that |V (G ′)| ≤ |V (G)|2.

We prove first that, for every CDS D of G with |D| = q, we can find in polynomial
time a CDS D′ of G ′ with |D′| ≤ (q + 1)/2. We may assume that D ⊆ K . Note that
if |D| is odd, then D is properly contained in K because, by hypothesis, |K | is even.
Consider D̃ ⊆ V (G) defined as follows: let D̃ = D if |D| is even and let D̃ = D∪{v}
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otherwise, where v ∈ K\D. Note that, by construction, |D̃| is even. Let s = |D̃| and
suppose that D̃ = {v1, . . . , vs}. Let D′ := {z{vi ,vi+s/2} ∈ V (G ′) : i = 1, . . . , s/2}.
Observe that |D′| ≤ (q + 1)/2. Since D is a CDS of G, then, by the construction of
G ′, it is straightforward to check that D′ is a CDS of G ′. Thus, we conclude that, for
every CDS of G with size q, we can find, in polynomial time, a CDS of G ′ with size
at most (q + 1)/2. Thus, we conclude that OPTMinCDS(G ′) ≤ OPTMinCDS(G).

Nowweprove that, for everyCDS D′ ofG ′ with |D′| = q,we canfind in polynomial
time a CDS D of G such that |D| ≤ 2q. We may assume that D′ ⊆ K ′. In this case,
the set D = {u, v ∈ V (G) : z{u,v} ∈ D′} has the desired properties.

Thus, given an α ln |V (G ′)|-approximate CDS of G ′, where α is some positive
constant, we can find, in polynomial time, a 4α ln |V (G)|-approximate CDS of G.

Now we are ready to conclude the proof of the theorem. Assume that NP �

DTIME(nO(log log n)), and suppose there exists an approximation algorithm with ratio
c ln n, for some constant c < 1/4, for MinCDS on n-vertex split graphs with diame-
ter 2. Let us call such algorithmAc. LetA′ be the algorithm forMinCDS on the class
of graphs G described in Lemma 1 defined as follows: given G, it constructs G ′, as
we mentioned previously, and runsAc on G ′. Thus, for ε ≤ 1− 4c < 1, algorithmA′
obtains a (1 − ε) ln n-approximate CDS of G, a contradiction to Lemma 1. ��

6 Hardness results for MINk-CDS

In this section we address complexity issues on Mink-CDS from the standpoint of
finding exact or approximate solutions.

As mentioned in the introduction, Nguyen and Huynh (2006) showed that
Mink-CDS is NP-hard on planar unit disk graphs with maximum degree 4. Their
proof, which is quite involved, clearly implies that Mink-CDS is NP-hard on planar
graphs with maximum degree 4. The next result, with a simpler proof, has the same
implication. Furthermore, it strengthens and generalizes a theorem of White et al.
(1985) who showed that MinCDS is NP-hard on planar bipartite graphs.

Theorem 8 For every k ∈ Z>, the decision version ofMink-CDS isNP-complete on
planar bipartite graphs of maximum degree 4.

Proof We say that a vertex subset K of a graph G is a connected vertex cover (CVC)
of G if every edge in G has at least one endpoint in K and G[K ] is connected.
The minimum connected vertex cover problem (MinCVC) seeks for a CVC of G of
minimum cardinality.

Fernau and Manlove (2009) proved that the decision version of MinCVC is
NP-complete on planar bipartite graphs of maximum degree 4. We present a
polynomial-time reduction from the decision version of MinCVC to the decision
version of Mink-CDS, which is clearly a problem in NP.

Let G be a planar bipartite graph with maximum degree 4. For each edge e ∈ E(G)

with endpoints u and v, we remove e from G, take a disjoint path Pe with k + 1 new
vertices, and then add edges weu and wev, where we is an endpoint of Pe. Let G ′ be
the graph obtained from G with this procedure. Clearly, G ′ is planar bipartite, and has
maximum degree 4. The reduction is depicted in Fig. 4.
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u v u v

we Pe
(a) (b)

Fig. 4 Gadget described in the proof of Theorem 8. a An edge e = uv of graph G. b Pe is a path with k+1
vertices and endpoint we

We claim that G has a CVC of size at most q if and only if G ′ has a k-CDS of size
at most |E(G)| + q.

Let K be a CVC of G with |K | ≤ q. Take D = K ∪ {we : e ∈ E(G)}. Clearly,
the size of D is at most |E(G)| + q. Since K induces a connected subgraph of G, it
follows that D induces a connected subgraph of G ′. For every e ∈ E(G), the distance
between each vertex of Pe and its endpoint we is at most k. Consequently, D is a
k-CDS of G ′ such that |D| ≤ |E(G)| + q.

Let D′ be a k-CDS of G ′ with |D′| ≤ |E(G)| + q. Take K = D′ ∩ V (G). Since,
for every e ∈ E(G), the path Pe in G ′ has k + 1 vertices, we conclude that we ∈ D′,
and thus |D′ ∩ (V (G ′)\V (G))| ≥ |E(G)|. Consequently, |K | ≤ q. Since we ∈ D′
for every e ∈ E(G) and D′ induces a connected subgraph of G ′, we conclude that K
is a vertex cover of G and G[K ] is connected. Therefore, K is a CVC of G, and this
completes the proof. ��

Let p, q be positive integers. We say that a graph G is (p, q)-split if there is a
partition (K , S) of V (G) such that α(G[K ]) ≤ p and ω(G[S]) ≤ q. We call such a
partition a (p, q)-split partition. Note that every split graph is contained in the class of
(p, q)-split graphs, since every split graph is a (1, 1)-split graph (see Gyárfás 1998).

We present now an inapproximability result for Mink-CDS that can be seen as a
generalization of Theorem 5. First, we observe that every split graph has a 2-universal
vertex (just take any vertex in the clique side of a split partition). Thus, Mink-CDS
becomes trivial on split graphs for every k ≥ 2, and therefore one can only obtain
a result like Theorem 9 for a superclass of split graphs. We were able to prove an
inapproximabilty result for the class of (1, 2)-split graphs, as we show in what follows.

Theorem 9 For every k ∈ Z> and every fixed ε > 0,Mink-CDS cannot be approxi-
mated to within a factor of (1− ε) ln n on n-vertex (1, 2)-split graphs and on bipartite
graphs, unless NP ⊆ DTIME(nO(log log n))

Proof We first prove the claimed inapproximability threshold for bipartite graphs. We
next show a reduction fromMinCDS on split graphs toMink-CDS on bipartite graphs.
Naturally, we assume that k ≥ 2 because the result is already proven for k = 1.

Let G be a split graph. Firstly, we run the Heggernes–Kratsch algorithm on G and
obtain a split partition (K , S) of G. Let G ′ be the graph obtained from G as follows.
For every v ∈ S, take a disjoint path Pv with k − 1 new vertices and endpoint v′, and
add an edge connecting v to v′. Additionally, take another disjoint path Ph with k + 1
new vertices and endpoint h. Then, for each v ∈ K , add an edge connecting v to h.
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Fig. 5 Reduction described in the proof of Theorem9 (bipartite case). aGraphG with split partition (K , S).
b Bipartite graph G′ obtained from G when k = 3

Finally, remove all edges with both endpoints in K . We depict the construction of G ′
from G in Fig. 5. Clearly, G ′ is bipartite and can be constructed in time polynomial in
the size of G. Furthermore, observe that |V (G ′)| ≤ k|V (G)| + k + 1.

We claim that G has a CDS of size at most q if and only if G ′ has a k-CDS of size
at most q + 1. Let D be a CDS of G such that |D| ≤ q. We may assume, without loss
of generality, that D ⊆ K . Let us define D′ = D ∪ {h}. Since D is a CDS in G, then
D′ is a k-CDS in G ′. Hence, for every CDS of G with size at most q, we can find, in
polynomial time, a k-CDS of G ′ with size at most q + 1.

Consider now a k-CDS D′ of G ′ such that |D′| ≤ q + 1. Since D′ induces a
connected subgraph of G ′ and |V (Ph)| = k + 1, we conclude that h ∈ D′. Let us
define D = D′ ∩ K . Since D′ is a k-CDS of G ′, one may easily verify that D is a
CDS of G and |D| ≤ q. Hence, for every k-CDS of G ′ with size at most q + 1, we
can find, in polynomial time, a CDS of G with size at most q. Therefore, we conclude
that OPTMink-CDS(G ′) = OPTMinCDS(G) + 1.

Assume NP � DTIME(nO(log log n)) and suppose, to the contrary, that there exists
an approximation algorithm for Mink-CDS on n-vertex bipartite graphs with ratio
(1−ε) ln n, where ε < 1 is some fixed positive constant. Let us call such algorithmAε.
Consider the following algorithm A′ that, for every input n-vertex split graph G runs
as follows.

Step 1. Check if n < k+2. If yes, then solveMinCDS onG by brute force. Otherwise,
go to the next step;

Step 2. Check ifOPTMinCDS(G) < 1/ε (by enumerating, via brute force, all possible
solutions, if any, with at most �1/ε� vertices; remember that ε is a fixed
constant). If yes, then solve MinCDS on G by brute force. Otherwise, go to
the next step;

Step 3. Check if nε2 < (k + 1). If yes, then solve MinCDS on G by brute force.
Otherwise, go to the next step;

Step 4. Run the reduction described previously on G to obtain G ′;
Step 5. Run Aε on G ′ to obtain D′;
Step 6. Compute D from D′ (as explained in the reduction) and return D.
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It is immediate that A′ is a polynomial time algorithm. Now we claim that A′
always find a (1 − ε4) ln n-approximate CDS of G. If A′ halts before step 4, then it
returns an optimal CDS of G. Suppose now that A′ halts after step 6. By hypothesis,
we have that |D′| ≤ (1 − ε) ln |V (G ′)|OPTMinCDS(G ′). But since |D′| > |D|, n ≥
k + 2,OPTMinCDS(G) ≥ 1/ε and nε2 ≥ (k + 1), we conclude that

|D| ≤ (1 − ε) ln n1+ε2(1 + ε)OPTMinCDS(G) =
(
1 − ε4

)
ln nOPTMinCDS(G).

Therefore, the existence of A′ contradicts Theorem 5, and the result follows.
Now we prove the result for (1, 2)-split graphs. Since the reduction for (1, 2)-split

graphs is quite similar to the one we discussed for bipartite graphs, we present only a
sketch of the proof. The idea is to show a reduction from MinCDS on split graphs to
Mink-CDS on (1, 2)-split graphs. Consider a split graph G. As before, we begin by
running the Heggernes–Kratsch algorithm on G and we obtain a split partition (K , S)

of G.
Let G ′ be the graph obtained from G as follows. For every vertex v ∈ S, we

replace it by a path Pv with k vertices in such a way that vertex v is identified with
an endpoint of Pv . We keep all other vertices and edges of G intact. In summary,
V (G ′) = K ∪ (∪v∈SV (Pv)) and E(G ′) = E(G) ∪ (∪v∈S E(Pv)). Furthermore, note
that |V (G ′)| ≤ k|V (G)|. Note also that α(G ′[K ]) = 1 and ω(G ′[V (G ′)\K ]) = 2.
Thus, G ′ is a (1, 2)-split graph. Moreover, it can be constructed in time polynomial in
the size of G.

It is not hard to see that G has a CDS of size at most q if and only if G ′ has a k-CDS
of size at most q. Therefore, OPTMink-CDS(G ′) = OPTMinCDS(G).

Assume that there exists an approximation algorithm for Mink-CDS on n-vertex
(1, 2)-split graphs with ratio (1− ε) ln n, where ε < 1 is some fixed positive constant.
Let us call such algorithm Aε. Consider the following algorithm A′ that, for every
input n-vertex split graph G runs as follows.

Step 1. Check if nε < k. If yes, then solveMinCDS on G by brute force. Otherwise,
go to the next step;

Step 2. Run the reduction described previously on G to obtain G ′;
Step 3. Run Aε on G ′ to obtain D′;
Step 4. Compute D from D′ (as explained in the reduction) and return D.

One may easily check that A′ is a polynomial-time algorithm. We claim that A′
always returns a (1− ε2)-approximate CDS of G. IfA′ halts in step 1, then it returns
an optimal CDS of G. Suppose now that A′ halts after step 4. By hypothesis, we
have that |D′| ≤ (1− ε) ln |V (G ′)|OPTMinCDS(G ′). But since |D′| = |D|, |V (G ′)| ≤
kn, nε ≥ k and OPTMinCDS(G) = OPTMink-CDS(G ′), we conclude that

|D| ≤ (1 − ε) ln n1+εOPTMinCDS(G) =
(
1 − ε2

)
ln nOPTMinCDS(G).

Therefore, under the hypothesis that NP � DTIME(nO(log log n)), the existence of
A′ contradicts Theorem 5, and so the result follows. ��
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As we mentioned in the literature review subsection, Bonsma (2012) proved that
MinCDS isAPX-complete on cubic graphs. The next theorem can be seen as a move
in the direction of extending Bonsma’s result. To make our presentation more self-
contained, we define now the concept, which is used in the proof of Theorem 10, of
an L-reduction.

Let P and Q be two optimization problems. An L-reduction from P to Q is a
quadruple ( f, g, α, β), where f and g are polynomial-time algorithms, and α and β

are positive constants such that the following conditions hold:

(L1) if I is an instance of P , then f (I ) is an instance of Q;
(L2) OPTQ( f (I )) ≤ αOPTP (I ) for every instance I of P;
(L3) for every instance I of P and every feasible solution S to f (I ) with objective

value valQ( f (I ), S), the algorithm g returns a solution g(S) to I with objective
value valP (I, g(S)) such that

|OPTP (I ) − valP (I, g(S))| ≤ β |OPTQ( f (I )) − valQ( f (I ), S)|.

Theorem 10 For every k ∈ Z>,Mink-CDS is APX-complete on bipartite graphs of
maximum degree 4.

Proof We present an L-reduction fromMinCVC toMink-CDS. In fact, we show that
the reduction described in the proof of Theorem 8 is an L-reduction. Then, we use the
fact that MinCVC is APX-hard on bipartite graphs of maximum degree 4 (Escoffier
et al. 2010).

LetG be a bipartite graph with maximum degree 4, and letG ′ be the graph obtained
from G using the reduction presented in the proof of Theorem 8. Observe that, for
each CVC K of G, we can construct, in polynomial time, a k-CDS D of G ′ with
|D| ≤ |K | + |E(G)| (see the proof of Theorem 8). Taking K as a minimum CVC
of G, we can conclude that OPTMink-CDS(G ′) ≤ OPTMinCVC(G) + |E(G)|. (This
inequality will be used in what follows.)

Since every vertex in G has degree at most 4, for every CVC K of G, it follows
that |E(G)| ≤ 4|K |. Therefore, for eachCVC K ofG, we can find, in polynomial time,
a k-CDS D ofG ′ such that |D| ≤ 5|K |. Thus,OPTMink-CDS(G ′) ≤ 5OPTMinCVC(G).

Conversely, given a k-CDS D of G ′, we know that, for each e ∈ E(G), the set
D contains we and at least one of the endpoints of e. Thus, if we take K = D ∩
V (G), we have that K is a CVC of G and |K | ≤ |D| − |E(G)|. Therefore, |K | −
OPTMinCVC(G) ≤ |D|− |E(G)|−OPTMinCVC(G) ≤ |D|−OPTMink-CDS(G ′). This
concludes the proof of the L-reduction.

Therefore,Mink-CDS is APX-hard on bipartite graphs of maximum degree 4. By
Corollary 2, this problem is inAPX, and therefore it is anAPX-complete problem. ��

In the proof of Theorem 4, we showed that, for every graphG with poly-separators,
there exists a σ(G)-approximation algorithm for MinWCDS, where σ(G) is the car-
dinality of the largest minimal separator of G. We next prove that the approximation
ratio of algorithm LPApproxMinWCDS, though simple as it is, is near-optimal. But
before we do that, we need the following lemma, which can be considered a step
towards a generalization of Theorem 2.
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Lemma 2 Let G be a graph and Sk(G) be the set of all minimal k-disruptive sepa-
rators of G. A set D ⊆ V (G) is a minimal k-CDS of G if and only if D is a minimal
transversal of Sk(G).

Proof Firstly, we prove that every k-CDS of G is a transversal of Sk(G). Let D ⊆
V (G) be minimal a k-CDS of G and consider a k-disruptive separator Γ of G. We
claim that D ∩ Γ 	= ∅. Indeed, if D ∩ Γ = ∅, then D is entirely contained in some
component of G − Γ , a contradiction to the fact that Γ is a k-disruptive separator of
G.

We next show that every minimal transversal of Sk(G) is a minimal k-CDS of G.
Let D ⊆ V (G) be a minimal transversal of Sk(G). Firstly, suppose to the contrary
that D[G] is not connected. Since D intersects every k-disruptive separator ofG, there
must be a component of G[D], say C , such that V (C) is a k-CDS of G; otherwise,
V (G)\D would be a k-disruptive separator of G, contradicting the assumption on D.
As we have shown before, V (C) contains a transversal of Sk(G), but, since V (C) is
strictly contained in D, this contradicts the minimality of D. Thus, D[G] is connected.

We now claim that D is a k-DS of G. Suppose to the contrary that there exists a
vertex v ∈ V (G) such that v /∈ Nk[D]. Therefore, Nk[v] ∩ D = ∅ and we conclude
that v is not a k-universal vertex of G, that is, {v} is not a k-CDS of G. Let us define
Γ = Nk(v). We claim that Γ is a k-disruptive separator of G. Clearly, G − Γ is
disconnected. Let C be a component of G − Γ . If v ∈ V (C), then V (C) = {v} and
we already know that {v} is not a k-CDS of G. If v /∈ V (C), then v /∈ Nk(V (C)) and,
once again, V (C) is not a k-CDS of G. Hence, Γ is a k-disruptive separator of G, a
contradiction to the fact that D is a transversal of Sk(G). This concludes the proof
that D is a k-DS of G. Since G[D] is also connected, D is a k-CDS of G. Finally, D
is a minimal k-CDS of G because any k-CDS of G strictly contained in D would be
a transversal of Sk(G), a contradiction the fact that D is a minimal transversal.

Let D ⊆ V (G) be a minimal k-CDS of G. We have shown that D intersects every
minimal k-disruptive separator of G. Now, we claim that D is a minimal transversal
of Sk(G). Observe that any transversal of Sk(G) strictly contained in D would be a
k-CDS of G, and this contradicts the fact that D is a minimal k-CDS of G. Therefore,
D is a minimal transversal of Sk(G) and the result follows. ��

Sonow let us prove, assumingP 	= NP, that the performanceguarantee of algorithm
LPApproxMinWCDS is close to the best we can hope for.

Theorem 11 For k ∈ Z> and a fixed integer p ≥ 2, let Gp be the class of graphs G
with σk(G) = p. For every k ∈ Z> and every fixed ε > 0, ifP 	= NP, thenMink-CDS
cannot be approximated to within a factor of

max
{
p − 1 − ε, 10

√
5 − 21

}
,

on the class Gp. Moreover, this claim holds even when we restrict it to (1, 2)-split
graphs in Gp.

Proof Let H be a hypergraph. We say that H is simple if none of its hyperedges is
contained within another. Moreover, for every integer p ≥ 2, we say that H is a
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Fig. 6 Reduction fromMinHVC toMink-CDS: construction of G from the hypergraphH. a A 4-uniform
hypergraph H with 3 hyperedges (dashed circles). b Path Pe with k vertices and end vertex we . c Graph
G. The vertices of the hypergraphH induce a clique in G

p-uniform hypergraph if all of its hyperedges have cardinality exactly p. A subset
K ⊆ V (H) is said to be a vertex cover ofH if K intersects each hyperedge ofH. The
minimum hypergraph vertex cover problem (MinHVC) consists in finding a vertex
cover of H of minimum cardinality.

We show an L-reduction from MinHVC on simple p-uniform hypergraphs (fixed
p ≥ 2) toMink-CDS on the class Gp. We consider two cases.
Case 1: p ≥ 3. Dinur et al. (2005) proved that, if P 	= NP, then for every ε >

0,MinHVC has no (p− 1− ε)-approximation on p-uniform simple hypergraphs, for
every p ≥ 3. Let H be an n-vertex p-uniform simple hypergraph with |E(H)| ≥ 2.
FromH, we construct a graphG with V (G) ⊇ V (H) as follows. For every e ∈ E(H),
we take a disjoint path Pe with k new vertices, and denote by we one of its end
vertices. Then, we add an edge connecting we to every vertex in e. Finally, we make
all vertices belonging to V (H) pairwise adjacent in G, that is, G[V (H)] is a clique.
This construction is depicted in Fig. 6. Note that G is a (1, 2)-split graph that can be
constructed in polynomial time in the size of H.
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Recall that Sk(G) denotes the set of all minimal k-disruptive separators of G. We
claim that Sk(G) = E(H). It is easy to see that E(H) ⊆ Sk(G). Now we prove
that Sk(G) ⊆ E(H). For that, it suffices to show that, for every minimal k-disruptive
separator Γ ofG, there exists e ∈ E(H) such that Γ = N (we)∩V (H). Consider Γ ∈
Sk(G). Note that, every minimal k-CDS of G is contained in V (H). Therefore, due to
the minimality of Γ , since, by definition, Γ intersects every minimal k-CDS ofG, one
may easily check that Γ ⊆ V (H). Suppose, to the contrary, that N (we)∩ V (H) 	= Γ

for all e ∈ E(H). Since N (we) ∩ V (H) ∈ Sk(G) for every e ∈ E(H), again, by
the minimality of Γ , it follows that, for every e ∈ E(H), N (we) ∩ V (H) is not
strictly contained in Γ . Hence, (N (we) ∩ V (H))\Γ 	= ∅ for every e ∈ E(H). By
the construction of G, we conclude that Γ is not a separator of G, a contradiction.
Therefore, we have Sk(G) = E(H). Consequently, σk(G) = p, that is, G ∈ Gp.

Now, we claim that G has a k-CDS of size q if and only if H has a vertex cover
of size q. Consider a k-CDS D of G. We may assume that D is minimal and that
D ⊆ V (H). By Lemma 2, D is a transversal of Sk(G). Since E(H) = Sk(G), we
conclude that D is a vertex cover ofH. Conversely, let K be a vertex cover ofH. We
may assume that K is minimal. Since E(H) = Sk(G), it follows that K is a transversal
of Sk(G). By Lemma 2, K is a k-CDS of G. Hence, we have OPTMink-CDS(G) =
OPTMinHVC(H), and this concludes the proof of the L-reduction.

Thus, every α-approximation forMink-CDS on (1, 2)-split graphs in Gp yields an
α-approximation forMinHVC on p-uniform simple hypergraphs. In view of the result
shown by Dinur et al. (2005), we conclude that, if P 	= NP, for every ε > 0, there is
no (p − 1 − ε)-approximation algorithm for Mink-CDS on (1, 2)-split graphs in the
class Gp.
Case 2: p = 2. In this case, we refer to the minimum vertex cover problem (MinVC),
which is simply the restriction of MinHVC to graphs (which are 2-uniform hyper-
graphs); and for this problem, Dinur and Safra (2005) showed that MinVC has no
(10

√
5− 21)-approximation if P 	= NP. In order to prove the result we claim, we use

the same reduction discussed before, and fromH (which is now a graph) we construct
a (1, 2)-split graph G with σk(G) = 2. The result follows analogously, this time using
the inapproximability result forMinVC.

The proof of the theorem is now complete, considering cases 1 and 2. ��

7 Concluding remarks and future research

We studied the minimum weight k-hop connected dominating set problem, a gener-
alization of the well-known minimum connected dominating set problem. We proved
that, for every k, the decision version ofMink-CDS isNP-complete on planar bipartite
graphs of maximum degree 4 (showing that the hardness of MinCDS carries over to
Mink-CDS on the same subclass of graphs).

We also proved a number of results on the (in)approximability of Mink-CDS.
We showed that Mink-CDS is APX-complete on the class of bipartite graphs with
maximum degree 4 (we recall that it has been proven by Bonsma (2012) thatMinCDS
on cubic graphs is APX-complete).
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We showed that the inapproximability threshold ((1−ε) ln n) ofMinCDS that holds
already for n-vertex split graphs (and also for bipartite graphs), proved by Chlebík and
Chlebíková (2004), can be generalized to Mink-CDS on (1, 2)-split graphs (and also
for bipartite graphs). We note here that, for k ≥ 2, the last result does not hold for
split graphs (on which the problem is trivial). We also showed an inapproximability
threshold close to that of Chlebík and Chlebíková (2004) forMinCDS on the smaller
class of n-vertex split graphs of diameter 2 (the smallest value of the diameter for
which the problem is non-trivial).

On the positive side, we presented a type of meta-approximation theorem which
says that, for every graph G, a β(G)-approximation forMinCDS on G can be turned
into a kβ(Gk)-approximation for Mink-CDS on G. As a consequence, we obtained
an algorithm for Mink-CDS that, for every graph G and every fixed 0 < ε ≤ 1,
returns a k(1+ ε)(ln(Δ(Gk) − 1) + 1)-aproximate k-CDS of G. This result improves
(asymptotically by a factor of 2) on the approximation originally proposed by Ren
and Zhao (2011) for the minimum connected set cover problem (a generalization of
Mink-CDS) which translates into a 2k(H(Δ(Gk))+1)-approximation forMink-CDS.
Furthermore, we showed two approximation algorithms for the weighted version of
MinCDS restricted to graphs with polynomially many minimal separators, a class that
includes, for instance, chordal graphs.

As future steps, we think it would be interesting to further investigate the graph
parameterσk , possibly finding classes of graphsG forwhich this parameter is bounded,
or graphs for which Sk(G) is polynomially bounded. Another line of research would
be the design of better approximation algorithms for Mink-CDS, when k ≥ 2, for
special classes of graphs, such as the cubic graphs.

Acknowledgements We thank the referees for the valuable comments and suggestions.
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