
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/276312066

An Integer Programming Approach for Fault-Tolerant Connected Dominating

Sets

Article in Informs Journal on Computing · February 2015

DOI: 10.1287/ijoc.2014.0619

CITATIONS

11
READS

132

4 authors:

Some of the authors of this publication are also working on these related projects:

Continuous Approaches to Cliques and Stable Sets View project

Airport gate assignment via integer programming View project

Austin L Buchanan

Oklahoma State University - Stillwater

11 PUBLICATIONS 90 CITATIONS

SEE PROFILE

Je Sang Sung

Texas A&M University

2 PUBLICATIONS 23 CITATIONS

SEE PROFILE

Sergiy Butenko

Texas A&M University

120 PUBLICATIONS 2,705 CITATIONS

SEE PROFILE

Eduardo Pasiliao

Air Force Research Laboratory

85 PUBLICATIONS 626 CITATIONS

SEE PROFILE

All content following this page was uploaded by Austin L Buchanan on 27 April 2018.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/276312066_An_Integer_Programming_Approach_for_Fault-Tolerant_Connected_Dominating_Sets?enrichId=rgreq-f7afd4436ab10b109cc93ffa272debca-XXX&enrichSource=Y292ZXJQYWdlOzI3NjMxMjA2NjtBUzo2MjAwNjYzMDc1NzE3MTJAMTUyNDg0NjczNjU3Mg%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/276312066_An_Integer_Programming_Approach_for_Fault-Tolerant_Connected_Dominating_Sets?enrichId=rgreq-f7afd4436ab10b109cc93ffa272debca-XXX&enrichSource=Y292ZXJQYWdlOzI3NjMxMjA2NjtBUzo2MjAwNjYzMDc1NzE3MTJAMTUyNDg0NjczNjU3Mg%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Continuous-Approaches-to-Cliques-and-Stable-Sets?enrichId=rgreq-f7afd4436ab10b109cc93ffa272debca-XXX&enrichSource=Y292ZXJQYWdlOzI3NjMxMjA2NjtBUzo2MjAwNjYzMDc1NzE3MTJAMTUyNDg0NjczNjU3Mg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Airport-gate-assignment-via-integer-programming?enrichId=rgreq-f7afd4436ab10b109cc93ffa272debca-XXX&enrichSource=Y292ZXJQYWdlOzI3NjMxMjA2NjtBUzo2MjAwNjYzMDc1NzE3MTJAMTUyNDg0NjczNjU3Mg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-f7afd4436ab10b109cc93ffa272debca-XXX&enrichSource=Y292ZXJQYWdlOzI3NjMxMjA2NjtBUzo2MjAwNjYzMDc1NzE3MTJAMTUyNDg0NjczNjU3Mg%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Austin_Buchanan?enrichId=rgreq-f7afd4436ab10b109cc93ffa272debca-XXX&enrichSource=Y292ZXJQYWdlOzI3NjMxMjA2NjtBUzo2MjAwNjYzMDc1NzE3MTJAMTUyNDg0NjczNjU3Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Austin_Buchanan?enrichId=rgreq-f7afd4436ab10b109cc93ffa272debca-XXX&enrichSource=Y292ZXJQYWdlOzI3NjMxMjA2NjtBUzo2MjAwNjYzMDc1NzE3MTJAMTUyNDg0NjczNjU3Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Oklahoma_State_University-Stillwater?enrichId=rgreq-f7afd4436ab10b109cc93ffa272debca-XXX&enrichSource=Y292ZXJQYWdlOzI3NjMxMjA2NjtBUzo2MjAwNjYzMDc1NzE3MTJAMTUyNDg0NjczNjU3Mg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Austin_Buchanan?enrichId=rgreq-f7afd4436ab10b109cc93ffa272debca-XXX&enrichSource=Y292ZXJQYWdlOzI3NjMxMjA2NjtBUzo2MjAwNjYzMDc1NzE3MTJAMTUyNDg0NjczNjU3Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Je_Sung?enrichId=rgreq-f7afd4436ab10b109cc93ffa272debca-XXX&enrichSource=Y292ZXJQYWdlOzI3NjMxMjA2NjtBUzo2MjAwNjYzMDc1NzE3MTJAMTUyNDg0NjczNjU3Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Je_Sung?enrichId=rgreq-f7afd4436ab10b109cc93ffa272debca-XXX&enrichSource=Y292ZXJQYWdlOzI3NjMxMjA2NjtBUzo2MjAwNjYzMDc1NzE3MTJAMTUyNDg0NjczNjU3Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Texas_A_M_University?enrichId=rgreq-f7afd4436ab10b109cc93ffa272debca-XXX&enrichSource=Y292ZXJQYWdlOzI3NjMxMjA2NjtBUzo2MjAwNjYzMDc1NzE3MTJAMTUyNDg0NjczNjU3Mg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Je_Sung?enrichId=rgreq-f7afd4436ab10b109cc93ffa272debca-XXX&enrichSource=Y292ZXJQYWdlOzI3NjMxMjA2NjtBUzo2MjAwNjYzMDc1NzE3MTJAMTUyNDg0NjczNjU3Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sergiy_Butenko?enrichId=rgreq-f7afd4436ab10b109cc93ffa272debca-XXX&enrichSource=Y292ZXJQYWdlOzI3NjMxMjA2NjtBUzo2MjAwNjYzMDc1NzE3MTJAMTUyNDg0NjczNjU3Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sergiy_Butenko?enrichId=rgreq-f7afd4436ab10b109cc93ffa272debca-XXX&enrichSource=Y292ZXJQYWdlOzI3NjMxMjA2NjtBUzo2MjAwNjYzMDc1NzE3MTJAMTUyNDg0NjczNjU3Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Texas_A_M_University?enrichId=rgreq-f7afd4436ab10b109cc93ffa272debca-XXX&enrichSource=Y292ZXJQYWdlOzI3NjMxMjA2NjtBUzo2MjAwNjYzMDc1NzE3MTJAMTUyNDg0NjczNjU3Mg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sergiy_Butenko?enrichId=rgreq-f7afd4436ab10b109cc93ffa272debca-XXX&enrichSource=Y292ZXJQYWdlOzI3NjMxMjA2NjtBUzo2MjAwNjYzMDc1NzE3MTJAMTUyNDg0NjczNjU3Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Eduardo_Pasiliao?enrichId=rgreq-f7afd4436ab10b109cc93ffa272debca-XXX&enrichSource=Y292ZXJQYWdlOzI3NjMxMjA2NjtBUzo2MjAwNjYzMDc1NzE3MTJAMTUyNDg0NjczNjU3Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Eduardo_Pasiliao?enrichId=rgreq-f7afd4436ab10b109cc93ffa272debca-XXX&enrichSource=Y292ZXJQYWdlOzI3NjMxMjA2NjtBUzo2MjAwNjYzMDc1NzE3MTJAMTUyNDg0NjczNjU3Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Air_Force_Research_Laboratory?enrichId=rgreq-f7afd4436ab10b109cc93ffa272debca-XXX&enrichSource=Y292ZXJQYWdlOzI3NjMxMjA2NjtBUzo2MjAwNjYzMDc1NzE3MTJAMTUyNDg0NjczNjU3Mg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Eduardo_Pasiliao?enrichId=rgreq-f7afd4436ab10b109cc93ffa272debca-XXX&enrichSource=Y292ZXJQYWdlOzI3NjMxMjA2NjtBUzo2MjAwNjYzMDc1NzE3MTJAMTUyNDg0NjczNjU3Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Austin_Buchanan?enrichId=rgreq-f7afd4436ab10b109cc93ffa272debca-XXX&enrichSource=Y292ZXJQYWdlOzI3NjMxMjA2NjtBUzo2MjAwNjYzMDc1NzE3MTJAMTUyNDg0NjczNjU3Mg%3D%3D&el=1_x_10&_esc=publicationCoverPdf

An Integer Programming Approach for

Fault-Tolerant Connected Dominating Sets∗

Austin Buchanan Je Sang Sung Sergiy Butenko
Eduardo L. Pasiliao

March 2, 2016

Abstract

This paper considers the minimum k-connected d-dominating set prob-
lem, which is a fault-tolerant generalization of the minimum connected
dominating set (MCDS) problem. Three integer programming formula-
tions based on vertex-cuts are proposed (depending on whether d < k,
d = k, or d > k) and their integer hulls are studied. The separation
problem for the vertex-cut inequalities is a weighted vertex-connectivity
problem and is polytime solvable, meaning that the LP relaxation can
be solved in polytime despite having exponentially many constraints. A
new class of valid inequalities – r-robust vertex-cut inequalities – is in-
troduced and is shown to induce exponentially many facets. Finally, a
lazy-constraint approach is shown to compare favorably with existing ap-
proaches for the MCDS problem (the case k = d = 1), and is in fact the
fastest in literature for standard test instances. A key subroutine is an
algorithm for finding an inclusion-wise minimal vertex-cut in linear time.
Computational results for (k, d) = (2, 1), (2, 2), (3, 3), (4, 4) are provided
as well.

1 Introduction

In the context of wireless ad-hoc networks, a connected dominating set (CDS)
is often created to serve as a virtual backbone for the network (Du and Wan
2013). The vertices in the network may not be able to communicate with each
other directly; however, a message departing from one vertex can be transmit-
ted through intermediate vertices to reach its destination. These intermediate
vertices are the CDS.

The properties of a CDS ensure the minimum requirements for a functioning
virtual backbone. Some other potentially desirable characteristics include low

∗Published as A. Buchanan, J.S. Sung, S. Butenko, E.L. Pasiliao. An integer programming
approach for fault-tolerant connected dominating sets. INFORMS Journal on Computing,
27(1):178-188, 2015. http://dx.doi.org/10.1287/ijoc.2014.0619

1

http://dx.doi.org/10.1287/ijoc.2014.0619

latency (the message transmission time is short) and fault-tolerance (the failure
of some vertices does not disrupt service). The latency issue can be remedied by
requiring that the subgraph induced by the CDS has a small diameter. This has
been explored by Buchanan et al. (2014). In this paper, we consider the issue
of fault-tolerance, or robustness under vertex failure, by studying k-connected
d-dominating sets. Note that a k-connected k-dominating set remains a CDS if
any fewer than k vertices fail.

Usually one is interested in a small CDS, leading to the minimum CDS
(MCDS) problem. The NP-hard MCDS problem and the closely-related max-
imum leaf spanning tree problem are well-studied in the operations research
and computer science literature, see, e.g., a recent book (Du and Wan 2013)
on the topic. A variety of approaches have been considered, including exact
approaches (Fomin et al. 2008, Lucena et al. 2010, Simonetti et al. 2011, Mor-
gan and Grout 2008, Fan and Watson 2012, Fujie 2004, 2003, Chen et al. 2010,
Gendron et al. 2014), heuristics (Butenko et al. 2004, Blum et al. 2005), approxi-
mation algorithms (Guha and Khuller 1998, Lu and Ravi 1998), and polynomial-
time approximation schemes for unit-disk graphs (Cheng et al. 2003, Hunt et al.
1998) and for unit-ball graphs (Zhang et al. 2008).

For the minimum k-connected d-dominating set problem, there exist approx-
imation algorithms with a constant factor for unit disk graphs and approxima-
tion algorithms with a logarithmic factor for some values of d and k for arbitrary
graphs (Dai and Wu 2006, Shang et al. 2007, Thai et al. 2007, Wu and Li 2008,
Li et al. 2012, Zhou et al. 2014). do Forte et al. (2013) provide IP formulations
and take a branch-and-cut approach for the minimum 2-1-CDS problem. Ahn
and Park (2014) study the minimum k-d-CDS problem and provide an approach
to solve the problem that is similar to the lazy-constraint approach taken in this
paper.

Given a graph G = (V,E), a subset S ⊆ V of vertices is called a k-
connected d-dominating set (k-d-CDS) if the subgraph induced by S has vertex-
connectivity at least k, and every vertex outside of S has at least d neighbors
from S. The minimum k-connected d-dominating set problem is the focus of
this paper. This problem asks: given a graph and positive integers d and k,
either find a k-d-CDS of the smallest size in the graph, or determine that none
exist. It is easy to see that k-d-CDS generalizes CDS (set k = d = 1), and the
minimum k-d-CDS problem generalizes the classical MCDS problem.

Many results in this paper concerning k-d-CDS and the k-d-CDS polytope
are stated for d ≥ k. This ensures nice properties that no longer hold when
d < k. In particular, it is shown that every superset of a k-d-CDS is also a
k-d-CDS when d ≥ k; however, this can fail when d < k.

1.1 Notation and terminology

We consider a simple undirected graph G = (V,E) with set V of n vertices
and set E of m edges. We denote the (open) neighborhood of a vertex i ∈ V
by N(i) = {j ∈ V | {i, j} ∈ E}, and the closed neighborhood of i ∈ V by
N [i] = N(i) ∪ {i}. A vertex v ∈ V is said to be universal if N [v] = V . A set

2

D ⊆ V is called a dominating set if each vertex in V \ D has a neighbor in
D. Let G[S] denote the subgraph induced by S ⊆ V . A dominating set that
induces a connected graph is called a connected dominating set (CDS). A graph
is said to be k-vertex-connected (or, simply, k-connected) if there exist at least
k vertex-disjoint paths between every pair of distinct vertices. Equivalently, a
connected graph is k-connected if it remains connected and nontrivial after the
removal of fewer than k vertices. The vertex-connectivity κ(G) of a graph G
is defined as the largest integer k such that G is k-connected. By convention,
a single universal vertex does not constitute a CDS since its induced subgraph
is trivial. However, if one considers a single vertex to constitute a CDS, its
existence can easily be determined. Similarly, a subset of k universal vertices
does not constitute a k-k-CDS since its induced subgraph becomes trivial after
the removal of k− 1 vertices; but, if desired, one can determine whether such a
set exists in linear time.

Definition 1. Given a graph G = (V,E), a subset S ⊆ V of vertices is called a
k-connected d-dominating set (k-d-CDS) if κ(G[S]) ≥ k and |N(i)∩S| ≥ d ∀i ∈
V \ S. The minimum k-d-CDS problem is to find a smallest subset S ⊆ V of
vertices such that S is a k-connected d-dominating set, or decide that none exist.

A vertex-cut C ⊆ V of a connected graph G is a subset of vertices such that
G[V \C] has at least two connected components or is trivial. A vertex-cut C is
said to be minimal (by inclusion) if no proper subset of C is a vertex-cut. For
distinct vertices a, b ∈ V , an a-b separator is a subset S ⊆ V \ {a, b} of vertices,
such that a and b are disconnected in G[V \ S].

1.2 Existing polyhedral results for 1-1-CDS

Several formulations have been proposed for MCDS and for the maximum leaf
spanning tree problem (MLSTP). Many of the formulations (called Edge-Vertex
Formulations) have a binary variable for each edge and for each vertex of the
graph (Fujie 2003, 2004, Lucena et al. 2010, Simonetti et al. 2011). In con-
strast, formulations (called Vertex Formulations) found in (Fujie 2004, Yuan
2005, Ahn and Park 2014) only have binary variables associated with the ver-
tices. Polyhedral studies have been conducted for both types of formulations
for the maximum leaf spanning tree problem (Fujie 2004). We are particularly
interested in the Vertex Formulations, as the formulations proposed in this pa-
per have this form. It has been noted that the maximum leaf spanning tree
polytope is full-dimensional if and only if the graph is biconnected (Fujie 2004).
Moreover, this study identified conditions for when the simple 0-1 bounds in-
duce facets. A characterization of facet-defining vertex-cut inequalities was also
established.

The study presented in this paper generalizes these results (translated to
the CDS context) for k-d-CDS when d ≥ k. In addition, a new class of valid
inequalities – called r-robust vertex-cut inequalities – is introduced. These in-
equalities generalize inequalities for MCDS introduced by Gendron et al. (2014),
which are in turn a generalization of the vertex-cut inequalities. We show that

3

this generalization leads to a simple characterization for when the vertex-cut
inequalities induce facets of the 1-1-CDS polytope. Next, we provide a brief
summary of results presented in each section.

1.3 Our contributions

In Section 2, we explore some properties of k-d-CDS, including the cost of ensur-
ing robustness and show that a graph has a k-d-CDS (for d ≥ k) if and only if it
is k-connected. More generally, a k-d-CDS exists if and only if the graph has a
k-block that is d-dominating—and this can be determined in polynomial time.
A characterization of k-d-CDS proved in this section leads directly to the IP for-
mulations. In Section 3, three exponentially-sized formulations for the minimum
k-d-CDS problem are presented that are based on vertex-cuts, and their integer
hulls are studied. Even though the three formulations have exponentially many
constraints, their LP relaxations can be solved in polynomial time since the
separation problems are weighted vertex-cut problems. A generalization of the
vertex-cut inequality, called an r-robust vertex-cut inequality, is introduced, and
the class of all such inequalities is shown to induce exponentially many facets.
In Section 4, a lazy-constraint approach is described and computational results
are provided for the minimum k-d-CDS problem for several values of k and d.
A key subroutine finds an (inclusion-wise) minimal vertex-cut in linear time.
The computational results for the classical MCDS problem (k = d = 1) are the
fastest in literature. In fact, the lazy-constraint approach solves 42 of the 47
problem instances in a 10-second time limit, while no previous approach solves
this many in a one-hour time limit.

2 Properties of k-d-CDS

Lemma 1. Let d and k be positive integers such that d ≥ k. For any vertex-cut
C ⊂ V and k-d-CDS S ⊆ V of a graph G = (V,E), we have that |S ∩ C| ≥ k.

Proof. Proof. For contradiction purposes, suppose that there exists a k-d-CDS
S ⊆ V of G with |S∩C| ≤ k−1. Since C is a vertex-cut, it either separates the
graph into at least two connected components or it is a collection of n− 1 or n
vertices. It is clear that if |C| = n− 1 or |C| = n, then S cannot be a k-d-CDS
since |S| = |S∩C|+ |S∩ (V \C)| ≤ (k−1)+1 = k and a k-d-CDS must have at
least k+ 1 vertices to be k-connected. So we can assume that C ⊆ V separates
A,B ⊆ V \C, meaning that A∩B = ∅ and E∩{{u, v} | u ∈ A, v ∈ B} = ∅. We
consider two cases. In the first case, suppose that A∩S = ∅ (or B∩S = ∅). Then
S is not a k-d-CDS, since no vertex belonging to A (B) will be k-dominated
(hence, not d-dominated). In the second case, suppose that A ∩ S 6= ∅ and
B ∩ S 6= ∅, then there exists a ∈ A ∩ S and b ∈ B ∩ S. Then the removal of
the at most k − 1 nodes in S ∩ C disconnects a and b in G[S], i.e., G[S] is not
k-vertex-connected. Thus S cannot be a k-d-CDS, a contradiction.

4

Theorem 1 (Characterization of k-d-CDS for d ≥ k). Let d and k be positive
integers such that d ≥ k. Given a graph G = (V,E), a subset S ⊆ V of vertices
is a k-d-CDS of G if and only if

1. |S ∩ C| ≥ k for every vertex-cut C ⊂ V of G, and

2. |S ∩N(v)| ≥ d for every vertex v ∈ V \ S.

Moreover, S ⊆ V is a k-k-CDS for G if and only if the first condition above
holds.

Proof. Proof. The ‘only if’ direction follows by Lemma 1 and by definition of
k-d-CDS. For the other direction, suppose that |S ∩C| ≥ k for every vertex-cut
C ⊂ V of G. We will show that |C ′| ≥ k for every vertex-cut C ′ ⊆ S of G[S].
See that C ′∪ (V \S) is a vertex-cut for G. Accordingly, by assumption, we have
that |S ∩ (C ′ ∪ (V \ S))| ≥ k. Hence, |C ′| = |S ∩ C ′| = |S ∩ (C ′ ∪ (V \ S))| ≥ k
and G[S] is k-connected. If |S ∩ N(v)| ≥ d for every vertex v ∈ V \ S, then
S is also d-dominating; hence it is a k-d-CDS for G. See that if k = d, then 1
implies 2. This holds because, for each vertex v ∈ V , its neighborhood N(v) is
a vertex-cut, so v will be d(= k)-dominated.

Proposition 1. For every d ≥ k, the collection of k-d-CDSs of a k-connected
graph is nonempty and closed under taking supersets. For every d < k, there
exists a graph for which the collection of k-d-CDSs is not closed under taking
supersets.

Proof. Proof. For d ≥ k, the set V will be a k-d-CDS of G = (V,E) when G is
k-connected, so the collection is nonempty. Now, given a k-d-CDS S ⊂ V and
S′ ⊃ S, we have that: |S′ ∩ C| ≥ |S ∩ C| ≥ k for every vertex-cut C ⊂ V ; and
|S′ ∩ N(v)| ≥ |S ∩ N(v)| ≥ d for every vertex v ∈ V \ S′ ⊂ V \ S. Thus, by
Theorem 1, S′ is also a k-d-CDS, and the collection of k-d-CDSs is closed under
taking supersets.

Now, consider d < k and a complete graph on vertices S = {1, 2, . . . , k + 1}
with an additional vertex v attached to the first d vertices. While S forms a
k-d-CDS, S ∪ {v} does not.

It is easy to see that a CDS exists if and only if the graph is connected. This
can be generalized for k-d-CDS as follows. Recall that a k-block is an inclusion-
wise maximal k-connected subset of vertices. Every n-vertex graph has at most
b(2n−1)/3c k-blocks, and they can be listed in polynomial time (Matula 1978).
As a result, for all positive integers k and d, there is a polynomial time algorithm
to find a k-d-CDS (when one exists).

Corollary 1 (Characterization of graphs with a k-d-CDS). A graph G = (V,E)
has a k-d-CDS if and only if it has a k-block that is d-dominating. Further, for
d ≥ k, the following are equivalent.

1. There exists a k-d-CDS in G.

5

2. The vertex set V is a k-d-CDS for G.

3. The graph G is k-connected.

Proof. Proof. Suppose G has a k-d-CDS S ⊆ V . Then S is a subset of a max-
imal k-block S′. Note that S′ will also be d-dominating, so S′ is a k-d-CDS
as well. The direction ‘if’ is trivial. That the other statements are equivalent
follows by Theorem 1 and Proposition 1.

2.1 The cost of fault-tolerance

Fault-tolerance, or robustness under vertex failure, is a desirable property; how-
ever, it is not free. In fact, as Corollary 2 shows, fault-tolerance entails a
strictly more-costly solution. One may wonder if the extra cost required for
fault-tolerance can be bounded. Proposition 2 shows that this is not the case;
the cost can be essentially as large as possible. First, we make use of the fol-
lowing lemma, which holds trivially by definition.

Lemma 2. Let k be a positive integer. Suppose that a graph G = (V,E) has
a (k + 1)-(k + 1)-CDS S ⊆ V . Then for any v ∈ S, we have that S \ {v} is a
k-k-CDS for G.

Corollary 2. Let k be a positive integer. Suppose that a graph G = (V,E) has
a (k+ 1)-(k+ 1)-CDS. Denote by γk,d(G) the size of a minimum k-d-CDS of G
and by γc(G) the size of a minimum CDS in G. Then,

k + γc(G) ≤ 1 + γk,k(G) ≤ γk+1,k+1(G). (1)

Moreover, each inequality is sharp on a complete graph on k + 2 vertices.

Proof. Proof. To see the rightmost inequality, let S be a minimum (k + 1)-
(k + 1)-CDS and apply Lemma 2. The first inequality holds by induction on k
since γc(G) = γ1,1(G). Sharpness holds for Kk+2 because γp,p(Kk+2) = p + 1
for any 1 ≤ p ≤ k + 1.

Proposition 2. For any fixed positive integer k, there exist infinitely many
graphs G = (V,E) for which γk,k(G) is a constant, but γk+1,k+1(G) = |V | − 2.

Proof. Proof. For any q ≥ 4 and any k ≥ 1, we construct a graph G on k + q
vertices such that γk,k(G) = k + 1 and γk+1,k+1(G) = k + q − 2. Then, to
prove the claim, construct such a graph for each integer q ≥ 4. The graph
G = (Q ∪R,E ∪ F) is constructed as follows:

Q = {u1, . . . , uq}
R = {v1, . . . , vk}
E = {{v, x} : v 6= x, v ∈ R, x ∈ Q ∪R}
F = {{ui, ui+1} : 1 ≤ i < q}.

6

It is clear that γk,k(G) = k+1, since R∪{u1} is a k-k-CDS for G. Also see that
γk+1,k+1(G) ≤ k+q−2 since R∪{ui : 1 < i < q} is a (k+1)-(k+1)-CDS. Now we
show that γk+1,k+1(G) ≥ k+ q−2. It is clear that R∪{ui} is a u1-uq separator
of size k + 1 for any 1 < i < q. Thus, by Lemma 1, every (k + 1)-(k + 1)-CDS
for G must use every vertex from R ∪ {ui} for 1 < i < q.

3 IP Formulations and the k-d-CDS polytope

In this section, we describe and study three different formulations for the min-
imum k-d-CDS problem. The formulations differ depending on whether d = k;
d > k; or d < k and are similar to those proposed by Ahn and Park (2014). In
each formulation, the n-vector x of 0-1 variables is the characteristic vector of
a k-d-CDS for a graph G = (V,E).

In the case that d = k, the formulation has the following representation.

γk,k(G) = min
∑

v∈V
xv (2)

∑

v∈C
xv ≥ k for every minimal vertex-cut C ⊂ V (3)

xv ∈ {0, 1} ∀v ∈ V (4)

This formulation generalizes the formulation for MCDS given by Yuan (2005),
which is itself obtained by replacing each variable yi in the maximum leaf span-
ning tree formulation of Fujie (2004) with 1−xi. The validity of the formulation
follows by Theorem 1. Recognize that the formulation is still valid if constraint
(3) is required for every vertex-cut; however, the minimal vertex-cut inequalities
subsume the non-minimal vertex-cut inequalities. We note that there can be ex-
ponentially many minimal vertex-cut constraints, since there exist k-connected

graphs with Ω
(

2k n
2

k2

)
minimum vertex-cuts (Kanevsky 1990).

When d > k, we add one more set of constraints to ensure d-domination:

γk,d(G) = min
∑

v∈V
xv (5)

∑

v∈C
xv ≥ k for every minimal vertex-cut C ⊂ V (6)

(d− k)xv +
∑

j∈N(v)

xj ≥ d ∀v ∈ V (7)

xv ∈ {0, 1} ∀v ∈ V (8)

It would have been sufficient to add just the d-domination constraints dxv +∑
j∈N(v) xj ≥ d. The validity of such a formulation would follow by Theorem

1. However, the inequality (d− k)xv +
∑
j∈N(v) xj ≥ d is tighter. This tighter

inequality is valid since, if xv = 0, then the constraint is the same, and if xv = 1,

7

then at least k neighbors of v must be selected for k-connectivity. This tight-
ening generalizes a previous observation of Buchanan et al. (2014) for CDS and
has also been noted for k-d-CDS by Ahn and Park (2014).

When d < k, the vertex-cut constraint that was used in the two previous
formulations is no longer valid. However, a simple modification to the vertex-cut
constraint makes it valid again. If desired, the quadratic vertex-cut constraint
(10) can be linearized.

When d < k:

γk,d(G) = min
∑

v∈V
xv (9)

∑

v∈S
xv ≥ kxaxb for every minimal a-b-separator S ⊂ V, ∀a, b ∈ V, a 6= b, {a, b} /∈ E

(10)

(d− k)xv +
∑

j∈N(v)

xj ≥ d ∀v ∈ V (11)

xv ∈ {0, 1} ∀v ∈ V (12)

It is known that the CDS polytope is full-dimensional if and only if the graph
is biconnected (Fujie 2004). This can be generalized for the k-d-CDS polytope
when d ≥ k. The k-d-CDS polytope PI for a graph G is defined as the convex
hull of characteristic vectors of k-d-CDSs of G.

Theorem 2 (Integer hull dimension, 0-1 facets). Let d ≥ k be positive integers.
The k-d-CDS polytope for a graph G = (V,E) is full-dimensional if and only
if G is (k + 1)-connected with minimum degree at least d. Moreover, if G is
(k + 1)-connected with minimum degree at least d, then for every vertex v ∈ V ,

1. xv ≤ 1 induces a facet, and

2. xv ≥ 0 induces a facet if and only if

i. v does not belong to a vertex-cut of size k + 1, and

ii. |N(w)| ≥ d+ 1 for every vertex w ∈ N [v].

More generally, the k-d-CDS polytope of a k-connected n-vertex graph G =
(V,E) has dimension n− |Ψk,d(G)|, where

Ψk,d(G) = {v ∈ V | v belongs to a vertex-cut of size k or |N(v)| < d}.

Proof. Proof. The proof is straightforward (but tedious), so we provide a short
sketch. The key fact is that, when d ≥ k, the collection of k-d-CDSs of a graph is
closed under taking supersets (by Proposition 1). To prove dimension, consider
the usual n−|Ψk,d(G)|+1 affinely independent points in the k-d-CDS polytope
PI . The points include the all-ones vector and the all-ones vectors with one
entry flipped to zero, i.e., 1 and 1 − ev, v ∈ V \ Ψk,d(G), where ev is the zero
vector with vth entry changed to one. Note that a vertex v ∈ Ψk,d(G) must be-
long to every k-d-CDS of G (forcing xv = 1) and thus the dimension is reduced

8

by |Ψk,d(G)|. So, the dimension is at least, and at most, n− |Ψk,d(G)|. Finally,
it is easy to see that the set Ψk,d(G) is empty (i.e., PI is full-dimensional) if and
only if the graph is (k + 1)-connected with minimum degree at least d. When
PI is full-dimensional, the points given earlier show point 1. Proving point 2
reduces to checking that 1− ev − ez is feasible for each z ∈ V \ {v}.

Proposition 3. The separation problem for the vertex-cut inequalities (3) and
(6) is a weighted vertex-connectivity problem. It can be solved in O(κnm log (n2/m))
time (Henzinger et al. 2000), where κ ≤ m/n is the unweighted vertex connec-
tivity.

Proof. Proof. Given x′ ∈ [0, 1]n and a graph G = (V,E), the separation prob-
lem asks if all vertex-cut inequalities are satisfied by x′, and, if not, requires a
vertex-cut C ⊂ V of G with

∑
i∈C x

′
i < k. Construct an instance of weighted

vertex connectivity by giving each vertex i ∈ V weight x′i. It is clear that the
weighted vertex-connectivity of G is at least k if and only if each vertex-cut
inequality (3) or (6) is satisfied. If the weighted vertex-connectivity of G is less
than k, a vertex-cut C having weight less than k will be found and the corre-
sponding inequality

∑
i∈C xi ≥ k is valid and separates x′ from the k-d-CDS

integer hull.

Thus, when d ≥ k the k-d-CDS linear programming relaxation can be solved
in polynomial time, e.g., using the ellipsoid method (Khachian 1979, Grötschel
et al. 1981). We note that the vertex-cut inequality (10) for d < k can be
linearized to

∑
v∈C xv ≥ k(xa + xb − 1). The separation problem for these lin-

earized inequalities can also be solved in polynomial time. In a naive approach,
solve

(
n
2

)
minimum weight a-b-vertex-cut problems by reducing them to edge-

connectivity problems and use a max-flow algorithm to solve the transformed
problem. Regardless, this does not seem useful since the linearized inequalities
will be very weak.

Unfortunately, the minimal vertex-cut inequalities do not necessarily induce
facets. As an example, consider the 1-1-CDS polytope for C6 (a cycle on 6
vertices) with vertices {1, 2, 3, 4, 5, 6} and edge set

{{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {6, 1}}.

The minimal vertex-cut inequality x1+x3 ≥ 1 is dominated by the facet-defining
inequality x1 + x3 + x5 ≥ 2. The possible failure of the minimal vertex-cut in-
equalities to induce facets motivates the study of r-robust vertex-cuts. We note
that a vertex-cut is equivalent to a 0-robust vertex-cut. The facet-defining in-
equality x1 + x3 + x5 ≥ 2 described earlier is actually a 1-robust vertex-cut
inequality.

Definition 2 (r-robust vertex-cut). Let r be a nonnegative integer. A subset
C ⊂ V of vertices is said to be an r-robust vertex-cut if C \ C ′ is a vertex-cut
for any C ′ ⊂ C with |C ′| ≤ r.

9

The following set of valid inequalities generalizes previously known inequal-
ities for CDS (see Proposition 3 of Gendron et al. (2014)).

Proposition 4 (r-robust vertex-cut inequalities). Let d ≥ k be positive integers.
The following inequality is valid for k-d-CDS for an r-robust vertex-cut C ⊆ V .

∑

i∈C
xi ≥ k + r (13)

Proof. Proof. The proof is by induction on r. The base case where r = 0 is
exactly the vertex-cut inequality. For the inductive step, suppose that the r-
robust vertex-cut inequalities hold. We shall show that the (r+1)-robust vertex-
cut inequalities are valid. Consider an arbitrary (r+ 1)-robust vertex-cut C. It
follows that C\{v} is an r-robust vertex-cut for any v ∈ C. Accordingly, we have
that

∑
i∈C\{v} xi ≥ k+r for any vertex v ∈ C. Summing these inequalities yields

∑

i∈C
(|C| − 1)xi ≥ |C|(k + r). (14)

Then, dividing by |C| − 1, and by the integrality of the left-hand-side we have

∑

i∈C
xi ≥

⌈ |C|
|C| − 1

(k + r)

⌉
=

⌈ |C| − 1

|C| − 1
(k + r) +

1

|C| − 1
(k + r)

⌉
= k + r + 1.

(15)

The last equality holds because k + r is positive, yet k + r ≤ |C| − 1.

Now that the r-robust vertex-cut inequalities are shown to be valid, we
can establish that they are actually interesting. Namely, the class of all such
inequalities can induce exponentially many facets. It is shown that for every
maximal independent set of a cycle, a facet-defining r-robust vertex-cut inequal-
ity can be generated. The number of maximal independent sets of a cycle grows
exponentially in the number of vertices.

Lemma 3 (Füredi (1987)). The number of maximal independent sets of the
n-vertex cycle graph is P (n), where P (3) = 3, P (4) = 2, P (5) = 5, and P (n) =
P (n−2) +P (n−3) for n ≥ 6. These numbers are, in fact, the Perrin numbers,

which grow at the rate P (n) ∼ ρn, where ρ = limn→∞
P (n)
P (n−1) = 1.3247 . . . is

the plastic number (see, e.g., Weisstein (2013)).

Proposition 5. The number of facet-defining r-robust vertex-cut inequalities
(summed over all values of r) of the 1-1-CDS polytope of the n-vertex cycle
graphs grows exponentially in n.

Proof. Proof. We demonstrate that every independent set S of Cn (n ≥ 3) is an
(|S|−2)-robust vertex-cut. Moreover, the associated (|S|−2)-robust vertex-cut
inequality for a maximal independent set S is shown to induce a facet of the
1-1-CDS polytope of Cn. Thus, by Lemma 3, the number of such inequalities
grows exponentially in the class of cycles.

10

Claim 1: an independent set S of Cn is an (|S| − 2)-robust vertex-cut. It
is clear that any pair of nonadjacent vertices forms a vertex-cut for Cn. Thus,
for any F ⊂ S with |F | ≤ |S| − 2, we have that S \ F is a vertex-cut for Cn,
implying that S is indeed an (|S| − 2)-robust vertex-cut.

Claim 2: the (|S|−2)-robust vertex-cut inequality for a maximal independent
set S of Cn is facet-defining for the 1-1-CDS polytope. The 1-1-CDS polytope
of Cn (n ≥ 3) is full-dimensional since Cn is biconnected. We provide n affinely
independent points. See that the point 1 − ei is feasible for each i ∈ S. Now
we generate n − |S| other points. Note that each vertex v /∈ S has at least
one neighbor in S, since otherwise S ∪{v} would be independent, contradicting
the maximality assumption. So for each v /∈ S there exists an adjacent vertex
sv ∈ S, and the point 1−ev−esv is feasible. It is not hard to see that these n−|S|
points along with the |S| points from earlier are affinely independent.

Now that r-robust vertex-cut inequalities have been shown to be interesting
(at least in the class of cycles), we would like to know when they will be facet-
defining in arbitrary graphs. We first mention a theorem of Fujie (2004) showing
when a particular inequality defines a facet of the maximum leaf spanning tree
polytope. The binary variable yi takes a value of one if and only if vertex i is a
leaf of the spanning tree (i.e., does not belong to the CDS).

Theorem 3 (Theorem 3.9 of Fujie (2004)). Let G = (V,E) be a biconnected
graph. For S ⊂ V such that G \ S is disconnected,

∑
i∈S yi ≤ |S| − 1 defines a

facet of the maximum leaf spanning tree polytope of graph G if and only if

1. For any proper subset S′ (S,G \ S′ is connected; and

2. Let G1 = G[S1], . . . , Gκ = G[Sκ] be connected components of G \S, where
S1, . . . , Sκ is a partition of V \ S. For j ∈ V \ S, σ(j) is defined as the
unique index k such that j ∈ Sk. Then, for any j ∈ V \ S, there exists
i ∈ S such that G[{i} ∪ Sσ(j) \ j] is connected.

Proposition 6 below can be viewed as a translation of this result to the
context of CDSs. Our characterization makes appropriate use of inclusion-wise
minimality and r-robust vertex-cuts. Before stating the proposition, we require
a lemma due to Kloks and Kratsch (1998). By minimal vertex-cut, we implicitly
mean inclusion-wise minimal vertex-cut.

Lemma 4 (Kloks and Kratsch (1998)). A vertex-cut C ⊂ V of a graph G =
(V,E) is minimal if and only if every vertex of C has a neighbor in every con-
nected component of G[V \ C].

Proposition 6. Let G = (V,E) be a biconnected graph and let C be a vertex-
cut. The inequality

∑
i∈C xi ≥ 1 induces a facet of the 1-1-CDS polytope of G

if and only if

1. C is a minimal (0-robust) vertex-cut, and

2. for every vertex v ∈ V \ C, the set C ∪ {v} is not a 1-robust vertex-cut.

11

Proof. Proof. Validity is clear, so we provide n affinely independent points in
the 1-1-CDS polytope where

∑
i∈C xi = 1.

First we generate |C| points. We claim that for every v ∈ C, the set
Sv = (V \C)∪{v} is a 1-1-CDS for G. First see that Sv is connected, since v has
a neighbor in every connected component of G[V \ C] by minimality of C and
Lemma 4. Second, Sv is dominating, since every vertex not in Sv belongs to C,
and every vertex in C has a neighbor in every connected component of G[V \C].

Now we give n−|C| other points. Since for every vertex v ∈ V \C,C∪{v} is
not a 1-robust vertex-cut, this implies that for every v ∈ V \C there exists w ∈ C
such that C ∪{v}\{w} is not a vertex-cut. We claim that its complement Sv =
V \((C ∪ {v}) \ {w}) is a 1-1-CDS for G. We have established that C∪{v}\{w}
is not a vertex-cut, so its complement Sv induces a connected graph. Moreover,
Sv is dominating. Every vertex z ∈ C is dominated since it has a neighbor in
every connected component of G[V \C], and there are at least two such compo-
nents (so z remains dominated even if v is one of its neighbors). Every vertex in
V \C (that is not v) belongs to Sv. Finally, v must be dominated, because: ei-
ther (1) it is isolated in G[V \C] in which case by Lemma 4 it is adjacent to every
vertex in C, implying that it is dominated; or (2) it is not isolated in G[V \ C]
in which case it has a neighbor in its connected component that belongs to Sv.

To prove ‘only if’, we will show that if condition 1 or 2 fails, then the vertex-
cut inequality for C cannot induce a facet when the polytope is full-dimensional.
Suppose that C is not minimal, implying that there exists v ∈ C such that C\{v}
is a vertex-cut. Then the inequality

∑
i∈C\{v} xi ≥ 1 dominates the inequality∑

i∈C xi ≥ 1. In the other case, C is minimal, yet there exists v ∈ V \ C such
that C ∪ {v} is a 1-robust vertex-cut. Then the 1-robust vertex-cut inequality
xv +

∑
i∈C xi ≥ 2 dominates the inequality

∑
i∈C xi ≥ 1.

Unfortunately, given a vertex-cut, the problem of finding its ‘robustness’ –
the largest value of r such that it is an r-robust vertex-cut – is coNP-hard. The
associated decision problem is shown to be coNP-complete below. We note that
this problem is polytime solvable when r is a constant; the naive algorithm runs
in time O(mnr).

Proposition 7. Given a graph G = (V,E), a vertex-cut C ⊂ V , and a non-
negative integer r, the problem of determining if C is an r-robust vertex-cut is
coNP-complete. This holds even when G is a split graph and C is a clique.

Proof. Proof. The problem belongs to coNP, since a subset C ′ ⊆ C of at most
r vertices provides a short certificate that the answer is ‘no’ in the case that
C \ C ′ is not a vertex-cut for G. The reduction is from Set Cover defined
by a ground set U = {1, . . . ,m}, a collection S = {S1, . . . , Sn} of subsets of
U , and a nonnegative integer r. This problem asks: does there exist a subcol-
lection S ′ ⊂ S of r sets whose union is U? We construct a graph G = (V,E)
and vertex-cut C ⊂ V such that C is an r-robust vertex-cut if and only if the
instance of Set Cover has no cover of size r.

Let V = S ∪ U . Construct E by adding an edge between every pair of dis-
tinct vertices from S, and for i = 1, . . . , n add edges between the vertex Si and

12

1

2

3 4

5

6
7

8

9

10

x1+ x2+ x3+ x4+x5+x6+ x7+x8+ x9+x10 >= 7

x1+ x2+2x3+ x4+x5+x6+ x7+x8 +x10 >= 7

x1+2x2 +2x4+x5+x6+2x7 +2x9 >= 7

x1+ x2 + x4 +x6+ x7 +2x9 >= 4

x3 +x5 +x8 +x10 >= 3

x1+ x2 + x4 + x7 + x9 >= 3

x1 + x3 +x6+ x7 + x9 >= 3

x2 + x4+x5 + x7 + x9 >= 3

x2 + x4 +x6+ x7 + x9 >= 3

x1 + x3 +x8 >= 2

x2 + x4+x5 >= 2

x2 + x4 + x7 >= 2

x2 +x5 +x8 >= 2

x3 +x6 +x10 >= 2

x4+x5 +x10 >= 2

x1+ x2 +x8+ x9 >= 2

x3 +x5 + x7 + x9 >= 2

x4 +x6 + x9+x10 >= 2

Figure 1: A graph and all facets of its 2-2-CDS polytope (excluding trivial 0-1 facets)

We were unable to find similar good characterizations for when the r-robust vertex-cut inequal-
ities induce facets of the k-d-CDS polytope of an arbitrary graph for values other than d = k = 1
and r = 0. However, through computational tests with PORTA [6], we were able to find examples
showing that the r-robust vertex-cut inequalities, despite inducing exponentially many facets, do
not fully describe the convex hull of integer feasible points. For example, Figure 1 provides the full
description of the k-d-CDS polytope for a small graph. Another example showing that this holds
even when k = d = 1 can be found in the appendix.

4 Solving the minimum k-k-CDS problem

In this section, we describe procedures for solving the minimum k-k-CDS problem and present
computational results for k = 1, 2, 3, 4.

The formulation presented in Section 3 for the minimum k-k-CDS problem has an exponential
number of constraints, so it is not practical to include all such constraints a priori. Instead, we first
define an initial set of constraints that enforces k-total-domination. Additional constraints that
ensure that the selected vertices are k-connected are added as needed in a lazy fashion.

• Initial constraints: k-total-domination. For each vertex i ∈ V , we add the k-total-
domination constraint

∑
j∈N(i) xj ≥ k. This inequality is valid since N(i) is a vertex-cut.

• Lazy constraints: k-connectivity. Given an integer solution x′ that is not k-connected, we
want to find a vertex-cut constraint that x′ violates. Let S ⊂ V denote the selected vertices
in x′. If G[S] is not connected, then S = V \ S is certainly a vertex-cut for G, however the
inequality

∑
j∈S xj ≥ k may not be very strong, and we strengthen it by finding a minimal

subset of S that is a vertex-cut for G. See Algorithm 1 for pseudocode for this procedure. If
G[S] is connected, but not k-connected, we first find a minimum vertex-cut C ⊂ S of G[S].
The set C ∪ S is a vertex-cut for G and we strengthen it as before.

Before adding a lazy constraint, one must first check if the subgraph induced by the current so-
lution is k-connected. We rely upon existing agorithms. For general k, the fastest known algorithms

10

Figure 1: A graph and all facets of its 2-2-CDS polytope (excluding trivial 0-1
facets)

its elements from U . Finally, let C = S be the vertex-cut. The set S is a clique
and U is an independent set, so G is a split graph.

Suppose that C is not an r-robust vertex-cut. Then, there exists a subset
C ′ ⊂ C of |C ′| ≤ r vertices such that C \C ′ is not a vertex-cut. In other words,
G[(V \ C) ∪ C ′] is connected. This implies that C ′ is a cover of size at most r.

Now suppose that the instance of Set Cover has a cover S ′ ⊂ S = C using
only r sets from S. Then S ′ is a 1-1-CDS for G of size r, implying that the
inequality

∑
v∈C xv ≥ 1 + r is not valid for the 1-1-CDS polytope of G. Hence,

C cannot be an r-robust vertex-cut.

We were unable to find similar good characterizations for when the r-robust
vertex-cut inequalities induce facets of the k-d-CDS polytope of an arbitrary
graph for values other than d = k = 1 and r = 0. However, through computa-
tional tests with PORTA (Christof et al. 1997), we were able to find examples
showing that the r-robust vertex-cut inequalities, despite inducing exponentially
many facets, do not fully describe the convex hull of integer feasible points. For
example, Figure 1 provides the full description of the k-d-CDS polytope for a
small graph. Another example showing that this holds even when k = d = 1
can be found in Appendix 5.

4 Solving the minimum k-d-CDS problem

In this section, we describe procedures for solving the minimum k-d-CDS prob-
lem and present computational results for (k, d) = (1, 1), (2, 1), (2, 2), (3, 3), (4, 4).

13

The cases where k = d are considered because they capture the notion of fault-
tolerance—since a k-k-CDS remains a CDS if any fewer than k vertices fail.
The reason for running tests with (k, d) = (2, 1) is because this case has been
considered in literature, e.g., by do Forte et al. (2013).

The formulations presented in Section 3 for the minimum k-d-CDS problem
have exponentially many constraints, so it is not practical to include all such
constraints a priori. Instead, we first define an initial set of constraints that
enforces d-domination. Additional constraints that ensure that the selected
vertices are k-connected are added as needed in a lazy fashion.

• Initial constraints: d-domination. For each vertex v ∈ V , we add
the constraint (d − k)xv +

∑
j∈N(v) xj ≥ d. When d 6= k, we have al-

ready described this inequality. When d = k, this inequality reduces to∑
j∈N(v) xj ≥ k, which is valid since N(v) is a vertex-cut.

• Lazy constraints: k-connectivity. Given an integer solution x′ that is not
k-connected, we want to find a vertex-cut constraint or an a-b-separator
inequality that x′ violates. Let S ⊂ V denote the selected vertices in x′.
First, find a minimum vertex-cut C ⊆ S of G[S]. Then, the vertex subset
C ′ = C ∪ (V \ S) is a vertex-cut for G. However, it may be rather large,
so we use Algorithm 1 to find a minimal subet C ′′ of C ′ that remains a
vertex-cut for G. Now, the constraint that we add will depend on the
values of d and k.

1. Case d ≥ k. Add the inequality
∑
j∈C′′ xj ≥ k, which is valid since

C ′′ is a vertex-cut.

2. Case d < k. Here, C ′′ is an a-b-separator for some pair of vertices a
and b, and the a-b-separator inequality

∑
j∈C′′ xj ≥ k(xa +xb− 1) is

valid. There can be many such inequalities depending on the choice
of a and b, and it is an interesting question as to which and how
many of them should be used. This is evaluated experimentally later
in the paper.

Before adding a lazy constraint, one must first check if the subgraph induced
by the current solution is k-connected. We rely upon existing agorithms. For
general k, the fastest known algorithms to check if a graph is k-connected are
as slow or slower than known max-flow algorithms. Specifically, the best known
algorithm for computing unweighted vertex connectivity κ of an undirected
graph runs in O((n + min{κ5/2, κn3/4})κn) time (Gabow 2006). However, for
the particular cases k = 1, 2, 3, 4 that we consider, faster algorithms are known.
Checking connectivity (k = 1) can be done in O(m+n) time using BFS or DFS.
All biconnected components (k = 2) and articulation vertices can be found in
O(m + n) as well (Tarjan 1972). Similarly triconnected components (k = 3)
and 2-vertex-cuts can be found in O(m+ n) time (Hopcroft and Tarjan 1973).
For the case k = 4, an O(n2) algorithm is known (Kanevsky and Ramachan-
dran 1991). For k = 1, 2, 3 we use the O(m + n) algorithms. For k = 4, we
use an admittedly slower O(mn) algorithm (instead of O(n2)), which solves n

14

triconnectivity problems, for ease of implementation. We use the triconnectiv-
ity algorithm proposed by Hopcroft and Tarjan (1973), corrected by Gutwenger
and Mutzel (2001), and implemented by Neumann (2011).

Data: a vertex-cut C ⊂ V and a graph G = (V,E)
Result: an inclusion-wise minimal vertex-cut C ′ ⊆ C for G
C ′ ← {v ∈ C : ∃w /∈ C with {v, w} ∈ E};
S := {S1, . . . , Sp} ← connected components of G[V \ C ′], where
Si ⊂ V \ C ′, i = 1, . . . , p;
for v ∈ C ′ do

if v has a neighbor in every connected component then
// Do nothing; v must remain in C ′.

else
Merge v and all components from S that v has a neighbor in;
C ′ ← C ′ \ {v};

end

end
return C ′

Algorithm 1: Finding an (inclusion-wise) minimal vertex-cut in linear
time

Proposition 8. Algorithm 1 is correct and can be implemented to run in linear
time.

Proof. Proof. It is easy to see that C ′ and S can be constructed in timeO(m+n),
e.g., by representing C ′ as a boolean n-vector and find S using BFS. There are
|C ′| = O(n) iterations of the for-loop, and in each iteration we inspect the |N(v)|
neighbors of v, requiring at most n+ 2m operations. The merging operation for
a vertex v can also be done in |N(v)| time. Each vertex belonging to the same
connected component will have a pointer to its component’s identifier. When-
ever merging v, loop across the vertices from N(v), updating the identifier that
its neighbors point to.

The algorithm certainly returns a vertex-cut; minimality is all that requires
proof. See that if a vertex v ∈ C ′ has a neighbor in every connected component
in an iteration of the for-loop, it will continue to do so in subsequent iterations
since the components from S are only merged—never split nor created. (Note
that the first step of creating C ′ is done to ensure that ‘merging’ is well-defined.)
Thus, every vertex v ∈ C ′ has a neighbor in every connected component of
G[V \ C ′] and the returned vertex-cut is minimal by Lemma 4.

4.1 Computational setup and numerical experiments

All computational experiments were conducted on a Dell Precision WorkStation
T7500 R© machine with two Intel Xeon R© E5620 2.40 GHz quad-core processors
and 12 GB RAM. The solver used was Gurobi Optimizer version 5.5 with its
lazy-constraint callback (Gurobi Optimization, Inc 2013).

15

In Table 1, we compare the runtime of the lazy-constraint approach (referred
to in the table as “Lazy”) with other approaches for the MCDS problem. The
first six approaches were proposed by Gendron et al. (2014), and include stand-
alone (SA) and iterative-probing (IP) versions of Bender’s decomposition (BE),
branch-and-cut (BC), and a hybrid (HY) of BE and BC. The next three ap-
proaches are as follows: p-SABC is a branch-and-cut approach from Simonetti
et al. (2011); DGR is a branch-and-cut approach from Lucena et al. (2010); and
MTZ uses Miller-Tucker-Zemlin constraints to enforce connectivity (as proposed
by Fan and Watson (2012)). We note that the experiments of Gendron et al.
(2014) for the first six approaches and the MTZ approach were conducted on a
2.0 GHz Intel Xeon R© E5405 machine with 8 GB RAM.

As can be seen from Table 1, the lazy-constraint approach seems to be more
efficient than other approaches from literature. The comparisons are not entirely
fair, since the computers and MIP solvers used are not the same. However, the
drastic difference in runtimes suggests that the new approach is quicker, and
not just because of better hardware. In fact, the lazy approach solved 42 of the
47 instances in under 10 seconds, while no other approach was able to solve 42
instances in one hour. The instance v200 d10, which went unsolved by previous
approaches, was solved in under 10 minutes by the lazy approach.

More details regarding the experiments for 1-1-CDS can be found in Ta-
bles 2 and 3. Table 2 includes the initial LP relaxation, the number of lazy
cuts added, and the number of branch-and-bound nodes. Table 3 compares the
computational effort expended when using arbitrary vertex-cuts versus minimal
vertex-cuts. As can be seen from the tables, the most work is done whenever
the graph is sparse, where the domination number and connected domination
number tend to differ the most. Algorithm 1 becomes extremely important in
these cases, solving several instances in a couple seconds that were otherwise
unsolvable by the lazy approach.

In Table 4, we report experimental results for the minimum 2-1-CDS prob-
lem using the lazy approach. As mentioned in the previous section, a minimal
vertex-cut C can be an a-b separator for many choices of a and b—leading to
numerous possible lazy cuts. It was not clear to us which or how many of them
should be used. This lead us to consider two possible approaches:

• (Single cut) add the a-b-separator inequality for which a and b are the
lexicographically smallest, and

• (All cuts) add all possible a-b-separator inequalities.

As one might expect, using all cuts typically reduces the number of branch-
and-bound nodes explored. However, this comes at the cost of solving a larger
linear programming relaxation. In our tests, the single cut approach was gener-
ally faster, but not by much. In some cases, such as for the instance v200 d10,
the single cut approach is significantly faster (3 minutes versus 50 minutes). In
contrast, the all cuts approach was faster for the instance v200 d20 (1 minute
versus 6 minutes). Still, the runtimes for the single cut approach are encour-
aging, as it solves each instance in less than 7 minutes. This is much quicker

16

than other computational results for the minimum 2-1-CDS problem, such as
by do Forte et al. (2013), in which most 150-vertex instances went unsolved in
2 hours. Unfortunately, we are unable to compare our runtimes on the same
instances; do Forte et al. (2013) informed us that they could not locate the
instances that they used in their paper.

In Table 5, we provide runtimes and solution sizes for the same instances for
both the minimum k-total dominating set (kTDS) problem and the minimum
k-k-CDS problem for k = 1, 2, 3, 4. Recall that the minimum k-total dominating
set problem can be stated as

(minimum kTDS problem) min
x∈{0,1}n




∑

i∈V
xi

∣∣∣∣∣∣
∑

j∈N(v)

xj ≥ k, ∀v ∈ V



 .

For most of the considered instances the times to solve minimum kTDS and
minimum k-k-CDS are similar, meaning that the connectivity constraints need
not add burden, in contrast with computational results from previous literature.

5 Conclusion

This paper studies a fault-tolerant connected dominating set (called a k-connected
d-dominating set) and the associated minimization problem. We first identify
what a k-d-CDS “looks like,” allowing us to characterize precisely which graphs
admit a k-d-CDS. Then we show the potential costliness of ensuring robustness;
increasing the fault-tolerance parameters by a single unit can increase the size
of an optimal solution from a small constant to nearly the entire vertex set.
Three integer programming formulations for the minimum k-d-CDS problem
are provided and their integer hulls are studied. The dimension of the k-d-CDS
polytope can be easily identified whenever d ≥ k, and we show precisely when
the 0-1 bounds induce facets. We generalize previous inequalities from literature,
resulting in what we call r-robust vertex-cut inequalities. These inequalities are
shown to induce exponentially many facets. Then we consider solving the prob-
lem to optimality. A lazy-constraint integer programming approach is used to
solve standard problem instances relatively quickly—in roughly the same time
as the (not necessarily connected) dominating set problem. This is in contrast
to previous approaches in literature where the connected versions of the prob-
lem took considerably longer to solve. In the particular case that k = d = 1
(i.e., the MCDS problem) a lazy-constraint approach is shown to be faster than
previous approaches.

We finish by mentioning a few open problems.

• Complexity in unit disk graphs. It is straightforward to show that the
minimum k-d-CDS problem remains hard for any fixed positive integers
d and k in arbitrary graphs. However, in a significant number of appli-
cations, the problem instances are unit disk graphs. It is known that the
MCDS problem remains hard in unit disk graphs (Lichtenstein 1982), but

17

we are unaware of a similar result for k-d-CDS for (k, d) 6= (1, 1). Others,
such as Thai et al. (2007), have stated that they expect it to remain hard
for unit disk graphs.

• Separating r-robust vertex-cut inequalities for r > 0. The separa-
tion problem for the r-robust vertex-cut inequalities is polytime solvable
when r = 0; however, we have not been able to establish the complexity
for r > 0.

• Conditions for r-robust vertex-cut inequalities to induce facets.
Proposition 6 states a good characterization for when r-robust vertex-cut
inequalities induce facets of the k-d-CDS polytope when k = d = 1 and
r = 0. We have not been able to find good characterizations for other
values of k, d, and r.

Acknowledgements

This material is based upon work supported by the AFRL Mathematical Mod-
eling and Optimization Institute. Partial support by AFOSR under grants
FA9550-12-1-0103 and FA8651-12-2-0011 is also gratefully acknowledged.

References

Ahn, N., S. Park. 2014. An optimization algorithm for the minimum k-connected
m-dominating set problem in wireless sensor networks. Tech. Rep. 2014-
04, KAIST. URL http://ie.kaist.ac.kr/isyse/professor/tech_file/

techicalreports0605.pdf.

Blum, J., M. Ding, A. Thaeler, X. Cheng. 2005. Connected dominating set in sensor
networks and manets. Handbook of Combinatorial Optimization 329–369.

Buchanan, A., J.S. Sung, V. Boginski, S. Butenko. 2014. On connected dominating sets
of restricted diameter. European Journal of Operational Research 236 410–418.

Butenko, S., X. Cheng, C. Oliveira, P.M. Pardalos. 2004. A new heuristic for the
minimum connected dominating set problem on ad hoc wireless networks.
Recent Developments in Cooperative Control and Optimization 61–73.

Chen, S., I. Ljubić, S. Raghavan. 2010. The regenerator location problem. Networks
55 205–220.

Cheng, X., X. Huang, D. Li, W. Wu, D.Z. Du. 2003. A polynomial-time approximation
scheme for the minimum-connected dominating set in ad hoc wireless networks.
Networks 42 202–208.

Christof, T., A. Löbel, M. Stoer. 1997. PORTA-polyhedron representation transfor-
mation algorithm. URL http://www.iwr.uni-heidelberg.de/groups/comopt/

software/PORTA/index.html.

Dai, F., J. Wu. 2006. On constructing k -connected k -dominating set in wireless ad hoc
and sensor networks. Journal of Parallel and Distributed Computing 66 947–958.

do Forte, V.L., A. Lucena, N. Maculan. 2013. Formulations for the minimum
2-connected dominating set problem. Electronic Notes in Discrete Mathematics
41 415–422.

18

http://ie.kaist.ac.kr/isyse/professor/tech_file/techicalreports0605.pdf
http://ie.kaist.ac.kr/isyse/professor/tech_file/techicalreports0605.pdf
http://www.iwr.uni-heidelberg.de/groups/comopt/software/PORTA/index.html
http://www.iwr.uni-heidelberg.de/groups/comopt/software/PORTA/index.html

Du, D.Z., P.J. Wan. 2013. Connected Dominating Set: Theory and Applications.
Springer.

Fan, N., J.P. Watson. 2012. Solving the connected dominating set problem and power
dominating set problem by integer programming. G. Lin, ed., Combinatorial
Optimization and Applications, Lecture Notes in Computer Science, vol. 7402.
Springer, 371–383.

Fomin, F.V., F. Grandoni, D. Kratsch. 2008. Solving connected dominating set faster
than 2n. Algorithmica 52 153–166.

Fujie, T. 2003. An exact algorithm for the maximum leaf spanning tree problem.
Computers & Operations Research 30 1931–1944.

Fujie, T. 2004. The maximum-leaf spanning tree problem: Formulations and facets.
Networks 43 212–223.

Füredi, Z. 1987. The number of maximal independent sets in connected graphs.
Journal of Graph Theory 11 463–470.

Gabow, H.N. 2006. Using expander graphs to find vertex connectivity. Journal of the
ACM 53 800–844.

Gendron, B., A. Lucena, A.S. da Cunha, L. Simonetti. 2014. Benders decomposition,
branch-and-cut, and hybrid algorithms for the minimum connected dominating
set problem. INFORMS Journal on Computing To Appear.

Grötschel, M., L. Lovász, A. Schrijver. 1981. The ellipsoid method and its
consequences in combinatorial optimization. Combinatorica 1 169–197.

Guha, S., S. Khuller. 1998. Approximation algorithms for connected dominating sets.
Algorithmica 20 374–387.

Gurobi Optimization, Inc. 2013. Gurobi Optimizer Reference Manual. URL
http://www.gurobi.com.

Gutwenger, C., P. Mutzel. 2001. A linear time implementation of SPQR-trees.
J. Marks, ed., Graph Drawing , Lecture Notes in Computer Science, vol. 1984.
Springer, 77–90.

Henzinger, M.R., S. Rao, H.N. Gabow. 2000. Computing vertex connectivity: New
bounds from old techniques. Journal of Algorithms 34 222–250.

Hopcroft, J.E., R.E. Tarjan. 1973. Dividing a graph into triconnected components.
SIAM Journal on Computing 2 135–158.

Hunt, H.B., M.V. Marathe, V. Radhakrishnan, S.S. Ravi, D.J. Rosenkrantz, R.E.
Stearns. 1998. NC-approximation schemes for NP-and PSPACE-hard problems
for geometric graphs. Journal of Algorithms 26 238–274.

Kanevsky, A. 1990. On the number of minimum size separating vertex sets in a graph
and how to find all of them. Proceedings of the first annual ACM-SIAM Sympo-
sium on Discrete Algorithms. Society for Industrial and Applied Mathematics,
411–421.

Kanevsky, A., V. Ramachandran. 1991. Improved algorithms for graph four-
connectivity. Journal of Computer and System Sciences 42 288–306.

Khachian, L.G. 1979. A polynomial algorithm in linear programming. Soviet
Mathematics Doklady 191–194.

Kloks, T., D. Kratsch. 1998. Listing all minimal separators of a graph. SIAM Journal
on Computing 27 605–613.

19

http://www.gurobi.com

Li, Y., Y. Wu, C. Ai, R. Beyah. 2012. On the construction of k-connected m-
dominating sets in wireless networks. Journal of Combinatorial Optimization
23 118–139.

Lichtenstein, D. 1982. Planar formulae and their uses. SIAM Journal on Computing
11 329–343.

Lu, H.I., R. Ravi. 1998. Approximating maximum leaf spanning trees in almost linear
time. Journal of Algorithms 29 132–141.

Lucena, A., N. Maculan, L. Simonetti. 2010. Reformulations and solution algorithms
for the maximum leaf spanning tree problem. Computational Management
Science 7 289–311.

Matula, D.W. 1978. k-blocks and ultrablocks in graphs. Journal of Combinatorial
Theory, Series B 24 1–13.

Morgan, M., V. Grout. 2008. Finding optimal solutions to backbone minimisation
problems using mixed integer programming. Proceedings of the 7th International
Network Conference (INC 2008). 53–64.

Mycielski, J. 1955. Sur le coloriage des graphes. Colloq. Math. 3 161–162.

Neumann, A. 2011. Implementation of Schmidts algorithm for certifying triconnec-
tivity testing. Master’s thesis, Saarland University.

Shang, W., P. Wan, F. Yao, X. Hu. 2007. Algorithms for minimum m-connected
k-tuple dominating set problem. Theoretical Computer Science 381 241–247.

Simonetti, L., A.S. da Cunha, A. Lucena. 2011. The minimum connected dominating
set problem: formulation, valid inequalities and a branch-and-cut algorithm.
Network Optimization 162–169.

Tarjan, R.E. 1972. Depth-first search and linear graph algorithms. SIAM Journal on
Computing 1 146–160.

Thai, M.T., N. Zhang, R. Tiwari, X. Xu. 2007. On approximation algorithms of
k-connected m-dominating sets in disk graphs. Theoretical Computer Science
385 49–59.

Trick, M. 2013. Graph coloring instances. URL http://mat.gsia.cmu.edu/COLOR/

instances.html.

Weisstein, E. W. 2013. Perrin Sequence. MathWorld–A Wolfram Web Resource.
URL http://mathworld.wolfram.com/PerrinSequence.html.

Wu, Y., Y. Li. 2008. Construction algorithms for k-connected m-dominating sets in
wireless sensor networks. Proceedings of the 9th ACM International Symposium
on Mobile Ad Hoc Networking and Computing . ACM, 83–90.

Yuan, D. 2005. Energy-efficient broadcasting in wireless ad hoc networks: performance
benchmarking and distributed algorithms based on network connectivity charac-
terization. Proceedings of the 8th ACM International Symposium on Modeling,
Analysis and Simulation of Wireless and Mobile Systems. ACM, 28–35.

Zhang, Z., X. Gao, W. Wu, D.Z. Du. 2008. PTAS for minimum connected dominating
set in unit ball graph. Wireless Algorithms, Systems, and Applications 154–161.

Zhou, J., Z. Zhang, W. Wu, K. Xing. 2014. A greedy algorithm for the fault-tolerant
connected dominating set in a general graph. Journal of Combinatorial
Optimization 28 310–319.

20

http://mat.gsia.cmu.edu/COLOR/instances.html
http://mat.gsia.cmu.edu/COLOR/instances.html
http://mathworld.wolfram.com/PerrinSequence.html

Appendices

CDS facets for the Grötzsch graph

The convex hull of characteristic vectors of 1-1-CDSs of the Mycielski graph (My-
cielski 1955) on eleven vertices (also known as the Grötzsch graph) is not fully
described by the r-robust vertex-cut inequalities. Below are all facet-defining
inequalities – except for the trivial 0-1 facets – as given by PORTA (Christof
et al. 1997). The vertex numbering is the same as in the graph file provided by
Michael Trick for the DIMACS coloring challenge (Trick 2013).

x1+ x2+ x3+ x4+ x5+ x6+ x7+ x8+ x9+ x10+ x11 >= 4

x1+ x2+ x3+ x4+ x5+ x6 + x8 +2x11 >= 3

x1+ x2+ x3+ x4+ x5+ x6 + x10+2x11 >= 3

x1+ x2+ x3+ x4+ x5 + x7 + x9 +2x11 >= 3

x1+ x2+ x3+ x4+ x5 + x7 + x10+2x11 >= 3

x1+ x2+ x3+ x4+ x5 + x8+ x9 +2x11 >= 3

2x1 + x3 + x5+2x6+ x7+ x8+ x9+ x10+ x11 >= 3

x1+ x2 +2x5+ x6+ x7+ x8+ x9+2x10+ x11 >= 3

x1 +2x3+ x4 + x6+ x7+2x8+ x9+ x10+ x11 >= 3

2x2 + x4+ x5+ x6+2x7+ x8+ x9+ x10+ x11 >= 3

x2+ x3+2x4 + x6+ x7+ x8+2x9+ x10+ x11 >= 3

x1+ x2+ x3+ x4+ x5 +3x11 >= 3

x1+ x2+ x3+ x4 + x8+ x9 + x11 >= 2

x1+ x2+ x3 + x5+ x6 + x10+ x11 >= 2

x1+ x2 + x4+ x5 + x7 + x10+ x11 >= 2

x1 + x3+ x4+ x5+ x6 + x8 + x11 >= 2

x2+ x3+ x4+ x5 + x7 + x9 + x11 >= 2

x1+ x2 + x5+ x6+ x7+ x8+ x9+2x10 >= 2

x1 + x3+ x4 + x6+ x7+2x8+ x9+ x10 >= 2

x1 + x3 + x5+2x6+ x7+ x8+ x9+ x10 >= 2

x2+ x3+ x4 + x6+ x7+ x8+2x9+ x10 >= 2

x2 + x4+ x5+ x6+2x7+ x8+ x9+ x10 >= 2

x1 + x3 + x11 >= 1

x1 + x5 + x11 >= 1

x2 + x4 + x11 >= 1

x2 + x5 + x11 >= 1

x3+ x4 + x11 >= 1

x1 + x3 + x6 + x8 >= 1

x1 + x5+ x6 + x10 >= 1

x2 + x4 + x7 + x9 >= 1

x2 + x5 + x7 + x10 >= 1

x3+ x4 + x8+ x9 >= 1

x6+ x7+ x8+ x9+ x10 >= 1

21

Table 1: A comparison of runtimes, in seconds, to solve the MCDS problem (i.e.,
minimum 1-1-CDS). Aside from the “Lazy” approach, all times are from Gen-
dron et al. (2014). A dash indicates unsolved in time limit.

Instance SABE IPBE SABC IPBC SAHY IPHY p-SABC DGR MTZ Lazy
v30 d10 1222.10 756.87 0.03 0.02 6.11 2.88 0.01 0.01 36.20 0.24
v30 d20 0.01 0.00 0.02 0.02 0.01 0.02 0.02 0.10 0.92 0.01
v30 d30 0.02 0.02 0.05 0.06 0.03 0.02 0.05 0.03 1.23 0.01
v30 d50 0.00 0.00 0.01 0.03 0.01 0.01 0.04 0.08 1.07 0.01
v30 d70 0.00 0.00 0.02 0.00 0.01 0.00 0.02 0.01 0.07 0.01
v50 d5 - - 0.01 0.02 88.63 9.46 0.02 0.01 182.06 0.59
v50 d10 34.30 3.09 0.82 0.20 2.69 3.89 0.42 0.36 5.18 0.12
v50 d20 0.21 0.09 0.77 0.97 0.40 0.16 0.66 1.32 4.23 0.08
v50 d30 0.18 0.11 0.32 0.25 0.45 0.31 0.25 1.21 14.90 0.07
v50 d50 0.00 0.01 0.23 0.06 0.01 0.01 0.25 0.51 4.80 0.01
v50 d70 0.00 0.00 0.24 0.01 0.01 0.01 0.29 0.04 0.74 0.02
v70 d5 - - 2.06 0.39 188.65 674.75 1.42 0.26 2098.18 1.41
v70 d10 1.06 2.17 18.68 5.25 25.16 1.26 34.29 4.73 18.03 0.09
v70 d20 0.38 0.17 2.68 1.88 1.15 0.58 2.16 16.30 72.49 0.15
v70 d30 0.54 0.21 1.20 0.99 0.82 0.37 1.00 2.90 54.98 0.17
v70 d50 0.01 0.02 0.64 0.40 0.02 0.02 0.70 1.33 5.64 0.01
v70 d70 0.00 0.01 0.99 0.04 0.02 0.02 0.79 1.92 15.27 0.07
v100 d5 - - 58.77 64.13 - 142.49 342.25 12.50 872.93 0.36
v100 d10 0.49 0.33 28.25 39.71 2.68 1.70 32.11 9.36 176.67 0.34
v100 d20 1.88 1.26 283.23 414.49 6.48 2.70 174.93 86.16 460.49 0.40
v100 d30 3.83 2.46 329.05 638.89 11.17 4.42 193.65 258.15 1462.83 0.94
v100 d50 1.55 0.76 48.00 41.51 3.23 1.56 35.41 132.55 101.29 0.70
v100 d70 1.55 0.03 13.20 12.02 1.57 0.91 12.03 154.10 50.68 1.27
v120 d5 3.36 18.16 1465.05 199.01 102.61 35.10 - 2.65 258.56 0.31
v120 d10 23.97 3.86 - - 56.31 18.68 - 65.49 178.19 0.34
v120 d20 5.02 3.79 1316.70 - 16.47 8.31 610.89 393.47 1967.54 1.86
v120 d30 5.25 4.44 790.91 1913.36 14.21 7.56 475.54 653.70 2241.50 2.32
v120 d50 4.21 2.52 246.93 202.30 8.73 4.57 168.55 815.64 145.95 1.64
v120 d70 2.25 0.04 36.84 28.90 2.82 2.22 31.67 356.31 80.97 2.44
v150 d5 - 771.07 - - - - - 2954.00 - 3.46
v150 d10 51.09 28.28 - - 652.35 195.76 - 3247.89 - 4.72
v150 d20 367.30 271.65 - - 2116.24 903.76 - - - 9.34
v150 d30 21.12 11.25 2972.83 - 34.61 24.77 1954.00 2317.35 - 6.54
v150 d50 7.81 5.78 724.92 477.10 17.57 10.79 481.61 2756.36 257.47 2.41
v150 d70 4.30 0.06 62.56 49.69 5.01 2.95 43.75 1828.86 133.09 4.77
v200 d5 - 1658.85 - - - - - - - 32.92
v200 d10 - - - - - - - - - 496.43
v200 d20 1686.30 1945.80 - - - - - - - 243.25
v200 d30 3210.83 1847.88 - - - - - - - 172.55
v200 d50 24.79 19.33 3363.33 1887.43 44.42 28.54 2249.43 20155.00 3509.21 8.16
v200 d70 10.53 0.13 340.20 275.84 9.17 5.63 271.91 8154.13 507.44 9.45
IEEE-14-Bus 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.20 0.01
IEEE-30-Bus 0.00 0.00 0.01 0.01 0.00 0.01 0.01 0.01 0.52 0.01
IEEE-57-Bus - - 0.02 0.03 24.40 192.43 0.00 0.16 - 1.07
RTS96 - - 2.56 4.22 118.53 26.56 0.35 1.66 - 0.69
IEEE-118-Bus - - 0.22 0.51 65.65 2.88 0.07 0.36 - 0.08
IEEE-300-Bus - - - - - - - 1076.89 - 52.88
in 1 sec 15 20 17 19 13 15 19 14 5 27
in 10 sec 27 29 21 22 24 30 21 23 11 42
in 100 sec 33 33 28 28 35 36 27 27 19 44
in 1000 sec 34 36 34 34 39 41 35 34 30 47
solved 37 39 38 36 40 41 37 40 35 47
fastest 8 11 1 2 2 2 5 3 0 28

22

Table 2: Extended computational results for solving the minimum 1-1-CDS
problem using the lazy approach.

Instance IP Opt Root LP # Lazy cuts # B&B nodes IP Time
v30 d10 15 12.00 32 82 0.24
v30 d20 7 5.87 1 0 0.01
v30 d30 4 3.31 3 0 0.01
v30 d50 3 2.01 0 0 0.01
v30 d70 2 1.43 0 0 0.01
v50 d5 31 21.00 348 4,356 0.59
v50 d10 12 10.23 14 96 0.12
v50 d20 7 5.21 2 41 0.08
v50 d30 5 3.46 0 13 0.07
v50 d50 3 2.05 0 0 0.01
v50 d70 2 1.46 0 0 0.02
v70 d5 27 21.75 194 3,398 1.41
v70 d10 13 11.05 11 51 0.09
v70 d20 7 5.29 4 119 0.15
v70 d30 5 3.37 0 26 0.17
v70 d50 3 2.08 0 0 0.01
v70 d70 2 1.45 0 0 0.07
v100 d5 24 20.43 51 1,273 0.36
v100 d10 13 10.86 10 680 0.34
v100 d20 8 5.35 0 546 0.40
v100 d30 6 3.43 0 1,351 0.94
v100 d50 4 2.12 0 237 0.70
v100 d70 3 1.46 0 118 1.27
v120 d5 25 22.35 13 643 0.31
v120 d10 13 10.51 10 244 0.34
v120 d20 8 5.29 0 2,897 1.86
v120 d30 6 3.43 0 2,642 2.32
v120 d50 4 2.02 1 442 1.64
v120 d70 3 1.44 0 151 2.44
v150 d5 26 21.48 39 12,371 3.46
v150 d10 14 10.77 5 8,355 4.72
v150 d20 9 5.20 4 37,253 9.34
v150 d30 6 3.48 1 3,840 6.54
v150 d50 4 2.00 0 670 2.41
v150 d70 3 1.45 0 183 4.77
v200 d5 27 22.39 47 146,750 32.92
v200 d10 16 10.56 8 2,182,664 496.43
v200 d20 9 5.02 1 190,963 243.25
v200 d30 7 3.37 1 287,638 172.55
v200 d50 4 2.02 0 1,234 8.16
v200 d70 3 1.45 0 271 9.45
IEEE-14-Bus 5 4.75 1 0 0.01
IEEE-30-Bus 11 10.00 5 0 0.01
IEEE-57-Bus 31 21.67 844 8,457 1.07
RTS96 32 24.50 452 7,825 0.69
IEEE-118-Bus 43 39.00 30 148 0.08
IEEE-300-Bus 129 98.50 10,628 103,314 52.88

23

Table 3: The effect of Algorithm 1 on reducing the computational effort for the
minimum 1-1-CDS problem.

Without Algorithm 1 With Algorithm 1
Instance # Lazy cuts # B&B nodes Time # Lazy cuts # B&B nodes Time
v30 d10 54,750 81,015 770.39 32 82 0.24
v30 d20 3 0 0.02 1 0 0.01
v30 d30 3 0 0.02 3 0 0.01
v30 d50 0 0 0.00 0 0 0.01
v30 d70 0 0 0.00 0 0 0.01
v50 d5 >110,425 >125,657 >3600.00 348 4,356 0.59
v50 d10 91 297 0.55 14 96 0.12
v50 d20 4 29 0.08 2 41 0.08
v50 d30 0 13 0.08 0 13 0.07
v50 d50 0 0 0.02 0 0 0.01
v50 d70 0 0 0.02 0 0 0.02
v70 d5 >88,233 >97,749 >3600.00 194 3,398 1.41
v70 d10 32 179 0.11 11 51 0.09
v70 d20 3 177 0.13 4 119 0.15
v70 d30 0 26 0.16 0 26 0.17
v70 d50 0 0 0.02 0 0 0.01
v70 d70 0 0 0.08 0 0 0.07
v100 d5 10,266 14,891 104.23 51 1,273 0.36
v100 d10 10 211 0.25 10 680 0.34
v100 d20 0 546 0.41 0 546 0.40
v100 d30 0 1,351 0.92 0 1,351 0.94
v100 d50 0 237 0.70 0 237 0.70
v100 d70 0 118 1.23 0 118 1.27
v120 d5 173 1,071 0.67 13 643 0.31
v120 d10 14 220 0.31 10 244 0.34
v120 d20 0 2,897 1.86 0 2,897 1.86
v120 d30 0 2,642 2.25 0 2,642 2.32
v120 d50 1 465 1.20 1 442 1.64
v120 d70 0 151 2.48 0 151 2.44
v150 d5 1,125 15,506 32.03 39 12,371 3.46
v150 d10 7 13,094 4.70 5 8,355 4.72
v150 d20 4 38,251 10.00 4 37,253 9.34
v150 d30 1 5,120 9.35 1 3,840 6.54
v150 d50 0 670 2.50 0 670 2.41
v150 d70 0 183 4.65 0 183 4.77
v200 d5 138 199,543 84.20 47 146,750 32.92
v200 d10 6 2,220,011 520.21 8 2,182,664 496.43
v200 d20 1 192,712 240.82 1 190,963 243.25
v200 d30 1 287,645 172.99 1 287,638 172.55
v200 d50 0 1,234 8.10 0 1,234 8.16
v200 d70 0 271 9.45 0 271 9.45
IEEE-14-Bus 1 0 0.03 1 0 0.01
IEEE-30-Bus 47 54 0.05 5 0 0.01
IEEE-57-Bus >102,288 >116,896 >3600.00 844 8,457 1.07
RTS96 >78,608 >77,532 >3600.00 452 7,825 0.69
IEEE-118-Bus >67,771 >43,083 >3600.00 30 148 0.08
IEEE-300-Bus >39,576 >86,494 >3600.00 10,628 103,314 52.88

24

Table 4: Comparing two approaches for solving minimum 2-1-CDS: adding a
single lazy cut versus adding all lazy cuts.

IP Opt Single cut All cuts
Lazy Cuts # B&B nodes Time # Lazy Cuts # B&B nodes Time

v30 d10 18 1 0 0.02 60 0 0.03
v30 d20 8 10 18 0.04 105 10 0.04
v30 d30 5 0 0 0.02 0 0 0.02
v30 d50 3 0 0 0.01 0 0 0.01
v30 d70 3 0 21 0.05 0 21 0.05
v50 d5 ∞ 0 0 0.00 0 0 0.00
v50 d10 14 4 3 0.05 122 5 0.11
v50 d20 7 0 0 0.04 0 0 0.04
v50 d30 5 0 0 0.09 0 0 0.09
v50 d50 3 0 0 0.08 0 0 0.09
v50 d70 3 0 32 0.08 0 32 0.08
v70 d5 34 0 0 0.01 0 0 0.01
v70 d10 14 9 197 0.10 433 145 0.35
v70 d20 8 0 119 0.13 0 119 0.14
v70 d30 5 2 284 0.21 28 177 0.17
v70 d50 3 0 0 0.08 0 0 0.09
v70 d70 3 0 69 0.16 0 69 0.17
v100 d5 28 12 540 0.20 798 504 0.52
v100 d10 14 6 562 0.29 314 532 0.70
v100 d20 8 0 1,101 0.73 0 1,101 0.76
v100 d30 6 0 1,505 1.00 0 1,505 1.01
v100 d50 4 0 98 0.53 0 98 0.56
v100 d70 3 0 110 1.34 0 110 1.37
v120 d5 27 1 216 0.17 68 216 0.16
v120 d10 14 1 643 0.60 40 256 0.47
v120 d20 8 2 9,250 3.83 24 7,479 5.39
v120 d30 6 1 1,106 1.22 10 1,295 2.40
v120 d50 4 0 168 3.29 0 168 3.26
v120 d70 3 0 127 0.52 0 127 0.52
v150 d5 28 6 2,707 0.93 975 2,675 8.43
v150 d10 15 1 8,833 3.94 30 8,281 4.68
v150 d20 9 1 15,744 6.56 24 15,744 6.44
v150 d30 6 0 2,665 2.64 0 2,665 2.65
v150 d50 4 0 233 3.10 0 233 2.88
v150 d70 3 0 189 4.81 0 189 4.83
v200 d5 29 9 128,408 27.47 584 122,234 197.13
v200 d10 16 4 308,635 172.73 303 3,328,419 3061.52
v200 d20 9 1 1,296,791 386.55 15 120,163 64.35
v200 d30 7 0 163,791 157.67 0 163,791 158.39
v200 d50 4 0 298 8.42 0 298 8.42
v200 d70 3 0 269 9.63 0 269 9.48
IEEE-14 7 4 0 0.02 34 0 0.01
IEEE-30 15 0 0 0.01 0 0 0.00
IEEE-57 37 1 0 0.01 99 0 0.01
RTS-96 38 200 957 0.16 36,555 366 5.91
IEEE-118 ∞ 0 0 0.01 0 0 0.01
IEEE-300 ∞ 0 0 0.01 0 0 0.01

25

Table 5: A comparison of running times for minimum k-total dominating set
and minimum k-k-CDS. Blank entries denote that the instance is infeasible.

1TDS 1-1-CDS 2TDS 2-2-CDS 3TDS 3-3-CDS 4TDS 4-4-CDS
Graph Opt Time Opt Time Opt Time Opt Time Opt Time Opt Time Opt Time Opt Time
v30 d10 12 0.01 15 0.24
v30 d20 6 0.01 7 0.01
v30 d30 4 0.01 4 0.01 8 0.05 8 0.06 11 0.00 11 0.05 15 0.02 15 0.02
v30 d50 3 0.01 3 0.01 5 0.02 5 0.00 7 0.02 7 0.00 9 0.02 9 0.02
v30 d70 2 0.01 2 0.01 4 0.03 4 0.03 5 0.02 5 0.02 6 0.06 6 0.05
v50 d5 21 0.01 31 0.59
v50 d10 11 0.01 12 0.12 22 0.00 22 0.00
v50 d20 7 0.10 7 0.08 12 0.08 12 0.08 17 0.02 17 0.02
v50 d30 5 0.18 5 0.07 8 0.20 8 0.06 12 0.08 12 0.28 15 0.03 15 0.09
v50 d50 3 0.01 3 0.01 5 0.06 5 0.05 7 0.02 7 0.05 9 0.02 9 0.02
v50 d70 2 0.01 2 0.02 4 0.05 4 0.09 5 0.02 5 0.05 7 0.14 7 0.11
v70 d5 23 0.01 27 1.41 47 0.00 47 0.00
v70 d10 13 0.18 13 0.09 23 0.02 24 0.09
v70 d20 7 0.13 7 0.15 12 0.13 12 0.14 17 0.23 17 0.20 23 0.13 23 0.13
v70 d30 5 0.15 5 0.17 8 0.19 8 0.20 12 0.19 12 0.19 15 0.14 15 0.14
v70 d50 3 0.02 3 0.01 5 0.23 5 0.20 7 0.19 7 0.13 9 0.23 9 0.20
v70 d70 2 0.07 2 0.07 4 0.36 4 0.36 5 0.17 5 0.50 7 0.27 7 0.39
v100 d5 23 0.11 24 0.36 44 0.08 44 0.08
v100 d10 13 0.26 13 0.34 24 0.27 24 0.48 35 0.25 35 0.27
v100 d20 8 0.47 8 0.40 13 0.45 13 0.45 18 0.27 18 0.34 23 0.48 23 0.50
v100 d30 6 0.72 6 0.94 9 0.78 9 1.89 13 2.34 13 2.48 16 1.12 16 1.22
v100 d50 4 0.67 4 0.70 6 0.50 6 0.62 8 0.69 8 0.81 10 0.58 10 0.64
v100 d70 3 1.07 3 1.27 4 0.55 4 0.58 6 0.58 6 0.67 7 0.97 7 0.69
v120 d5 25 0.21 25 0.31 46 0.16 46 0.16
v120 d10 13 0.41 13 0.34 24 1.11 24 0.98 35 1.84 35 1.97 46 0.69 46 0.94
v120 d20 8 2.63 8 1.86 13 2.04 13 2.48 18 1.09 18 6.72 23 1.40 23 1.19
v120 d30 6 2.43 6 2.32 9 3.01 9 3.03 12 5.16 12 2.84 16 5.20 16 6.38
v120 d50 4 1.30 4 1.64 6 1.76 6 1.81 8 2.17 8 2.31 10 1.89 10 1.95
v120 d70 3 2.12 3 2.44 4 1.62 4 1.94 6 1.34 6 2.76 7 0.97 7 0.92
v150 d5 24 0.49 26 3.46 45 0.31 45 0.34 71 0.28 71 0.28
v150 d10 14 2.91 14 4.72 24 2.92 24 6.19 35 5.40 35 6.71 46 31.01 46 31.12
v150 d20 8 2.03 9 9.34 14 27.55 14 28.11 19 79.65 19 80.03 24 123.77 24 121.24
v150 d30 6 5.31 6 6.54 10 17.29 10 14.10 13 136.02 13 56.01 17 320.29 17 329.66
v150 d50 4 2.46 4 2.41 6 3.11 6 3.23 8 5.04 8 2.40 10 3.35 10 3.32
v150 d70 3 3.74 3 4.77 4 4.65 4 4.93 6 2.54 6 3.20 7 2.29 7 2.31
v200 d5 27 11.49 27 32.92 48 10.41 48 9.36 71 4.35 71 5.24
v200 d10 16 775.14 16 496.43 26 2,018.38 26 2,111.52 36 3,026.18 36 3,103.52 46 2,846.70 46 1,802.14
v200 d20 9 230.20 9 243.25 14 739.68 14 832.97 19 1,383.64 19 21,766.20 24 4,074.83 24 4,171.82
v200 d30 6 162.12 7 172.55 10 227.16 10 315.61 14 5,280.93 14 5,623.75 17 3,936.37 17 4,040.89
v200 d50 4 8.41 4 8.16 6 40.14 6 33.34 8 418.34 8 246.05 11 1,008.54 11 1,063.84
v200 d70 3 9.31 3 9.45 5 44.41 5 35.63 6 8.28 6 9.08 8 136.03 8 132.24

26

View publication statsView publication stats

https://www.researchgate.net/publication/276312066

	Introduction
	Notation and terminology
	Existing polyhedral results for 1-1-CDS
	Our contributions

	Properties of k-d-CDS
	The cost of fault-tolerance

	IP Formulations and the k-d-CDS polytope
	Solving the minimum k-d-CDS problem
	Computational setup and numerical experiments

	Conclusion

