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1 Introduction

Today’s use of recommender systems finds an increased and yet unconscious access to our everyday life.

More and more areas of life are therefore subject to constant optimisation. Companies such as Netflix,

Amazon and YouTube adapt their product proposals to the individual wishes of their customers. To make

this possible, the various collaborative-filtering and content-based recommender systems are used.

Since Karlgren (1990) first presented recommender systems as a kind of intelligent bookcase, much effort

has been put into the development and research of such systems. The most diverse subject areas were

not only illuminated by the industry. A whole new branch of research also opened up for science.

In their work “On the Diffculty of Evaluating Baselines A Study on Recommender Systems“ Rendle et al.

(2019) show that current research on the MovieLens10M dataset leads in a wrong direction. In addition to

general problems, they particulary list wrong working methods and missunderstood baselines by breaking

them by a number of simple methods such as matrix-factorization.

They were able to beat the existing baselines by not taking them for granted. On the contrary, they ques-

tioned them and transferred well evaluated and understood properties of the baselines from the Netflix-

Challenge to them.

As a result, they were not only able to beat the baselines reported for the MovieLens10M, but also the

newer methods from the last 5 years of research. Therefore, it can be assumed that the current and former

results obtained on theMovieLens10M dataset were not sufficient to be considered as a true baseline. Thus

they show the community a critical error on which can be found not only in the evaluation of recommender

systems but also in other scientific areas.

As a first problem, the authors point out that scientific papers whose focus is on better understanding and

improving existing baselines do not receive recognition because they do not seem innovative enough. In

contrast to industry, which tenders horrendous prizes for researching and improving such baselines, there

is a lack of such motivation in the scientific field. From the authors point of view, the scientific work on the

MovieLens10M dataset is misdirected, because one-off evaluations leading to one-hit-wonders, which are

then used as a starting point for further work. Thus Rendle et al. (2019) points out as a second point of

criticism that the need for further basic research for the MovieLens10M dataset is not yet exhausted.

This submission takes a critical look at the topic presented by Rendle et al. (2019). In addition, basic terms

and the results obtained are presented in a way that is comprehensible to the non-experienced reader. For

this purpose, the submission is divided into three subject areas. First of all, the non-experienced reader

is introduced to the topic of recommender systems in the section “A Study on Recommender Systems“.

Subsequently, building on the first section, the work in the section “On the Diffculty of Evaluating Baselines“

is presented in detail. The results are then evaluated in a critical discourse.

2 A Study on Recommender Systems

This section explains the basics of recommender systems necessary for the essential understanding of

the paper presented. Besides the general definition of the recommender problem, the corresponding so-

lution approaches are presented. Furthermore, the main focus will be on the solution approach of matrix

factorization.

2.1 Recommender Problem

The recommender problem consists of the entries of the sets U and I, where U represents the set of all

users and I the set of all items. Each of the users in U gives ratings from a set S of possible scores for the

available items in I. The resulting rating-matrix R is composed of R = U × I. The entries in R indicate

the rating from user u ∈ U to item i ∈ I. This entry is then referred to as rui. Due to incomplete item-

ratings, R may also be incomplete. In the following, the subset of all users who have rated a particular

item i is referred to as Ui. Similarly, Iu refers to the subset of items that were rated by user u. Since R is

not completely filled, there are missing values for some user-item relations. The aim of the recommender

system is to estimate the missing ratings r̂ui using a prediction-function p(u, i). The prediction-function

consists of p : U × I → S (Desrosiers and Karypis, 2011). In the further course of the work different

methods are presented to determine p(u, i).
In the following, the two main approaches of collaborative-filtering and content-based recommender sys-

tems will be discussed. In addition, it is explained how matrix factorization can be integrated into the two

ways of thinking.
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2.2 Content-Based

Content-based recommender systems work directly with feature vectors. Such a feature vector can, for

example, represent a user profile. In this case, this profile contains information about the user’s preferences,

such as genres, authors, etc. This is done by trying to create a model of the user, which best represents

his preferences. The different learning algorithms from the field of machine learning are used to learn or

create the models. The most prominent algorithms are: tf-idf, bayesian learning, Rocchio’s algorithm and

neural networks (Lops et al., 2011; Dacrema et al., 2019; Desrosiers and Karypis, 2011). Altogether the built

and learned feature vectors are compared with each other. Based on their closeness, similar features can

be used to generate missing ratings. Figure 1a shows a sketch of the general operation of content-based

recommenders.

2.3 Collaborative-Filtering

Unlike the content-based recommender, the collaborative-filtering recommender not only considers individ-

ual users and feature vectors, but rather a like-minded neighborhood of each user. Missing user ratings

can be extracted by this neighbourhood and networked to form a whole. It is assumed that amissing rating

of the considered user for an unknown item i will be similar to the rating of a user v as soon as u and v have
rated some items similarly. The similarity of the users is determined by the community ratings. This type

of recommender system is also known by the term neighborhood-based recommender (Desrosiers and

Karypis, 2011). The main focus of neighbourhood-based methods is on the application of iterative methods

such as k-nearest-neighbours or k-means. A neighborhood-based recommender can be viewed from two

angles: The first and best known problem is the so-called user-based prediction. Here, the missing ratings

of a considered user u are to be determined from his neighborhood Ni(u). Ni(u) denotes the subset of the

neighborhood of all users who have a similar manner of evaluation to u via the item i. The second problem

is that of item-based prediction. Analogously, the similarity of the items is determined by their received rat-

ings. This kind of problem consideres the neighborhood Nu(i) of all items i which were similar rated via the

user u. The similarity between the objects of a neighborhood is determined by distance functions such as

mean-squared-difference, pearson-correlation or cosine-similarity. Figure 1b shows a sketch of the general

operation of the collaborative-filtering recommender.

(a) Content-Based. (b) Collaborative-Filtering.

Figure 1: Overview of content-based (left) and collaborative-filtering (right) recommender systems.

Content-based recommender systems work via feature vectors. In contrast, collaborative filtering recom-

mender systems work over neighborhoods.

2.4 Matrix-Factorization

The core idea of matrix factorization is to supplement the not completely filled out rating-matrix R. For

this purpose the users and items are to be mapped to a joined latent feature space with dimensionality

f . The user is represented by the vector pu ∈ Rf and the item by the vector qi ∈ Rf . As a result, the

missing ratings and thus the user-item interaction are to be determined via the inner product r̂ui = qTi pu of

the corresponding vectors (Koren et al., 2009). In the following, the four most classical matrix factorization
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approaches are described in detail. Afterwards, the concrete learning methods with which the vectors are

learned are presented. In addition, the training data for which a concrete rating is available should be

referred to as B = {(u, i)|rui ∈ R}.

2.4.1 Basic Matrix-Factorization

The first and easiest way to solve matrix-factorization is to connect the feature vectors of the users and the

items using the inner product. The result is the user-item interaction. In addition, the error should be as

small as possible. Therefore, minpu,qi
∑

(u,i)∈B(rui − r̂ui)
2 is defined as an associatedminimization problem.

2.4.2 Regulated Matrix-Factorization

This problem extends the basic matrix-factorization by a regulation factor λ in the corresponding minimiza-

tion problem. Since R is thinly occupied, the effect of overfitting may occur due to learning from the few

known values. The problem with overfitting is that the generated ratings are too tight. To counteract this,

the magnitudes of the previous vectors is taken into account. High magnitudes are punished by a factor

λ(‖qi‖2+‖pu‖2) in theminimization problem. Overall, theminimization problemminpu,qi
∑

(u,i)∈B(rui − r̂ui)
2+

λ(‖qi‖2+‖pu‖2) is to be solved. The idea is that especially large entries in qi or pu cause ‖qi‖, ‖pu‖ to become

larger. Accordingly, ‖qi‖, ‖pu‖ increases the larger its entries become. This value is then additionally pun-

ished by squaring it. Small values are rewarded and large values are penalized. Additionally the influence

of this value can be regulated by λ.

2.4.3 Weighted Regulated Matrix-Factorization

A regulation factor λ is introduced in analogy to regulated matrix-factorization. Additional weights α and β
are introduced to take into account the individual magnitude of a vector. The minimization problem then

corresponds to minpu,qi
∑

(u,i)∈B(rui − r̂ui)
2 + λ(α‖qi‖2 + β‖pu‖2).

2.4.4 Biased Matrix-Factorization

A major advantage of matrix-factorization is the ability to model simple relationships according to the ap-

plication. Thus, an excellent data source cannot always be assumed. Due to the natural interaction of

the users with the items, preferences arise. Such preferences lead to behaviour patterns which manifest

themselves in the form of a bias in the data. In principle, a bias is not bad, but it must be taken into ac-

count when modeling the recommender system. The most popular model that takes bias into account is

called biased matrix-factorization. In addition, the missing rating is no longer determined only by the inner

product of the two vectors qi and pu. Rather, the bias is also considered. Accordingly, a missing rating is

calculated by r̂ui = bui + qTi pu, where bui is the bias of a user u and an item i. The bias is determined by

bui = µ + bu + bi. The parameter µ is the global average of all ratings rui ∈ R. Furthermore, bu = µu − µ
and bi = µi − µ. Here µu denotes the average of all assigned ratings of the user u. Similarly, µi denotes

the average of all received ratings of an item i. Thus bu indicates the deviation of the average assigned

rating of a user from the global average. Similarly, bi indicates the deviation of the average rating of an item

from the global average. In addition, the minimization problem can be extended by the bias. Accordingly,

the minimization problem is then minpu,qi
∑

(u,i)∈B(rui − r̂ui)
2 + λ(‖qi‖2 + ‖pu‖2+b2u + b2i ). Analogous to the

regulated matrix-factorization, the values bu and bi are penalized in addition to ‖qi‖, ‖pu‖. In this case bu, bi
are penalized more if they assume a large value and thus deviate strongly from the global average.

2.4.5 Advanced Matrix-Factorization

This section is intended to show that there are other approaches to matrix-factorization. Thus, implicit data

can also be included. First of all, it should be mentioned that temporary dynamics can also be included. On

the one hand, it is not realistic that a user cannot change his taste. On the other hand, the properties of an

item remain constant. Therefore, missing ratings can also be determined time-based. A missing rating is

then determined by r̂ui = µ + bi(t) + bu(t) + qTi pu(t) (Koren et al., 2009). As a second possibility, implicit

influence can be included. This can involve the properties of the items a user is dealing with. A missing

rating can be determined by r̂ui = µ + bi + bu + qTi (pu + |Iu|−
1
2
∑

i∈Iu yi). yi ∈ Rf describes the feature

vectors of the items i ∈ Iu which have been evaluated by user u. The correspondingminimization problems

can be adjusted as mentioned in the sections above (Koren, 2008).
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2.5 Optimization and Learning

An important point that does not emerge from the above points is the question of how the individual com-

ponents pu, qi, bu, bi are constructed. In the following, the three most common methods are presented.

2.5.1 Stochastic Gradient Descent

The best known and most common method when it comes to machine learning is stochastic gradient de-

scent (SGD). The goal of SGD is to minimize the error of a given objective function. Thus the estimators

mentioned in section 2.4 can be used as objective functions. In the field of recommender systems, Funk

(2006) presented a modified variant of SGD in the context of the Netflix Challenge. SGD can be applied

to regulated matrix-factorization with bias as well as without bias. This method can be described by the

following pseudo code:

Algorithm 1 SGD of Funk

Require: training-matrix Rtrain, initial mean µ, initial standard deviation σ2, regularization parameter λ,
learning rate γ, feature embedding f , epochs to train nepochs

1: P ← N (µ, σ2)|U|×f

2: Q ← N (µ, σ2)f×|I|

3: for epoch ∈ {0, · · · , nepochs − 1} do
4: for (u, i) ∈ Rtrain do

5: eui ← rui − r̂ui
6: qi ← qi + γ(euipu − λqi)
7: pu ← pu + γ(euiqi − λpu)
8: bi ← bi + γ(eui − λbi)
9: bu ← bu + γ(eui − λbu)

10: end for

11: end for

12: return P,Q

At the beginning, the matrices P,Q are filled with random numbers. According to Funk (2006) this can be

done by a gaussian-distribution. Then, for each element in the training set, the entries of the corresponding

vectors pu ∈ P, qi ∈ Q are recalculated on the basis of the error that occurred in an epoch. The parameters

µ, γ are introduced to avoid over- and underfitting. These can be determined using grid-search and k-fold

cross-validation. For the optimization of the parameters µ and γ the so-called grid-search procedure is

used. A grid of possible parameters is defined before the analysis. This grid consists of the sets Λ and Γ.
The grid-searchmethod then trains the algorithm to be considered with each possible pair of (λ ∈ Λ, γ ∈ Γ).
The models trained in this way are then tested using a k-fold cross-validation. The data set is divided into

k-equally large fragments. Each of the k parts is used once as a test set while the remaining (k − 1) parts
are used as training data. The average error is then determined via the k-folds and entered into the grid.

Thus the pair (λ ∈ Λ, γ ∈ Γ) can be determined for which the error is lowest. This approach is also called

Funk-SVD or SVD in combination with section 2.4.2 and 2.4.4 (Rendle et al., 2019). The algorithm shown

above can also be extended. Thus procedures like in section 2.4.5 can be solved. The second method from

section 2.4.5 is then also called SVD++. A coherent SGD approach was given by Koren and Bell (2011).

2.5.2 Alternating Least Square

The second method often used is alternating least square (ALS). In contrast to SGD, the vectors qi, pu are

adjusted in two steps. Since SGD qi and pu are both unknown, this is a non-convex problem. The idea

of ALS is to capture one of the two vectors and work with one unknown variable each. Thus the problem

becomes quadratic and can be solved optimally. For this purpose the matrix P is filled with random numbers

at the beginning. These should be as small as possible and can be generated by a gaussian-distribution.

Then P is recorded and all qi ∈ Q are recalculated according to the least-square problem. This step is then

repeated in reverse order. ALS terminated if a termination condition such as the convergence of the error

is satisfied for both steps (Zhou et al., 2008).
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2.5.3 Bayesian Learning

The third approach is known as bayesian learning. With this approach the so-called gibbs-sampler is

often used. The aim is to determine the common distribution of the vectors in P,Q. For this purpose the

gibbs-sampler is given an initialization of hyperparameters to generate the initial distribution. The common

distribution of the vectors qi ∈ Q, pu ∈ P is approximated by the conditional probabilities. The basic principle

is to select a variable in a reciprocal way and to generate a value dependent on the values of the other

variable according to its conditional distribution, with the other values remaining unchanged in each epoch.

A detailed representation of the gibbs-sampler was written by Salakhutdinov and Mnih (2008).
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