diff --git a/slides/methods.tex b/slides/methods.tex index 8294760da4b737e7bc823a5f92ae611ff9fbb547..cbbcf37e99994290e84f22b0ab9e496e1b5d8959 100644 --- a/slides/methods.tex +++ b/slides/methods.tex @@ -1,5 +1,32 @@ \section{Methods} -\subsection{Methods} +\subsection{Baseline Methods} \begin{frame} - This is the third slide \cite{wachsmuth:2017a}. + \frametitle{Similarity} + \begin{itemize} + \item For the ranking of arguments, we measured the semantic similarity + between premise and conclusion + \item Here each word of the argument in embedded in a vector space and then the + average of the vectors of the argument is calculated + \item The similarity of a premise and a conclusion is the calculated by the + angle between them + \item In the course of this experiment, we used three different embeddings + \begin{itemize} + \item BERT\footnote{J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training of deep bidirectional transformers +for language understanding,”} + \item Elmo\footnote{M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettlemoyer, “Deep +contextualized word representations,”} + \item Glove\footnote{J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors for word representation,”} + \end{itemize} + \end{itemize} +\end{frame} + + +\begin{frame} + \frametitle{Sentiment} + \begin{itemize} + \item Another approach to rank the argument is to measure how positive the tone + of the premises is + \item For this, we use a sentiment neural network based on FastText\footnote{A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, “Bag of tricks for efficient text classification,”}, which was + trained on film ratings of IMDb + \end{itemize} \end{frame} \ No newline at end of file