diff --git a/bilder/BestPageRank.png b/bilder/BestPageRank.png new file mode 100644 index 0000000000000000000000000000000000000000..aa444e053088d495dd1972543f75e9ecc0494faf Binary files /dev/null and b/bilder/BestPageRank.png differ diff --git a/bilder/Vectors.png b/bilder/Vectors.png new file mode 100644 index 0000000000000000000000000000000000000000..b65e5c56a9f0fc8d3ce38c098baab569f706dd26 Binary files /dev/null and b/bilder/Vectors.png differ diff --git a/bilder/Wordnet.png b/bilder/Wordnet.png new file mode 100644 index 0000000000000000000000000000000000000000..c3d7e961883794ee355bd29c95b90921574e0c88 Binary files /dev/null and b/bilder/Wordnet.png differ diff --git a/slides/methods.tex b/slides/methods.tex index f44bf14ff52c9d89e28bf5443a9da81c9c61c346..a192b8d6b52bfe107f21aa6142dce6af0930d737 100644 --- a/slides/methods.tex +++ b/slides/methods.tex @@ -4,64 +4,50 @@ \begin{frame} \frametitle{PageRank} \begin{columns} - \column{0.6\textwidth} + \column{0.5\textwidth} \begin{itemize} - \item PageRank by \cite{PageRank1999} was originally used to evaluate relevant websites via their links - \item Websites can be replaced by arguments - \item Linking results due to the reuse of conclusions and premises - \item In this work it was used: - \begin{itemize} - \item Custom-made PageRank - \item NetworkX PageRank - \item NetworkX-Scipy PageRank - \end{itemize} + \item PageRank originally used for websites + \item Websites replaced by arguments \end{itemize} \begin{block}{Custom-made PageRank} \begin{equation*} p_t(c_i) = \left\{ \begin{array}{lr} - (1 - \alpha)\frac{1}{|D|} + \alpha \sum_{j}{\frac{p_{t-1}(c_j)}{|P'_j|}} & : t > 0\\ - \frac{1}{|D|} & : t = 0 + (1 - \alpha)G_{rel} + \alpha L_{rel} & : t > 0\\ + G_{rel} & : t = 0 \end{array} \right. \end{equation*} \end{block} - \column{0.4\textwidth} + \column{0.5\textwidth} \includegraphics[scale=0.25]{bilder/ExampleGraph.png} \end{columns} \end{frame} \begin{frame} \frametitle{WordNet} - \begin{itemize} - \item As knowledge based method $Sim(T_1, T_2)$ of \cite{Mihalcea2006similarity} was used - \item $Sim(T_1, T_2)$ determines the semantic similarity of $T_1,T_2$ by mutually picking up highly similar concepts - \item The concepts were determined via WordNet - \item For $maxSim$ the $CoSim$ of \cite{Wu1994distance} was used - \end{itemize} - \begin{block}{$Sim(T_1, T_2)$} - \begin{equation*} - \frac{1}{2}(\frac{\sum_{w \in {T_1}}{maxSim(w, T_2)\cdot idf(w)}}{\sum_{w \in {T_1}}{idf(w)}}+\frac{\sum_{w \in {T_2}}{maxSim(w, T_1)\cdot idf(w)}}{\sum_{w \in {T_2}}{idf(w)}}) - \end{equation*} - \end{block} - \begin{itemize} - \item Analogously, the average conceptual similarity between $T_1$ and $T_2$ was used as a weakened variant - \end{itemize} + \begin{columns} + \column{0.5\textwidth} + \begin{itemize} + \item Knowledge-based method + \item Conceptual similarity between conclusion and premise + \end{itemize} + \column{0.5\textwidth} + \includegraphics[scale=0.33]{bilder/Wordnet.png} + \end{columns} \end{frame} \begin{frame} \frametitle{Similarity} - \begin{itemize} - \item For ranking the arguments, we measured the semantic similarity - between the premises and conclusions - \item Argument were embedded word-wise in an averaged vector space - \item The resulting similarity was calculated by using $Cos(c, p)$ - \end{itemize} - \begin{block}{Embeddings used} - BERT by \cite{devlin2018bert} - - ELMo by \cite{Peters:2018ELMo} - - GloVe by \cite{pennington2014glove} - \end{block} + \begin{columns} + \column{0.5\textwidth} + \begin{itemize} + \item Semantic similarity + \item Different embeddings + \item BERT, ELMo and GloVe + \item Similarity over $Cos(C, P)$ + \end{itemize} + \column{0.5\textwidth} + \includegraphics[scale=0.4]{bilder/Vectors.png} + \end{columns} \end{frame} \begin{frame} \frametitle{Sentiment}